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Molecular dynamics is discussed from a mathematical perspective. The re-
cent history of method development is briefly surveyed with an emphasis on
the use of geometric integration as a guiding principle. The recovery of sta-
tistical mechanical averages from molecular dynamics is then introduced, and
the use of backward error analysis as a technique for analysing the accuracy
of numerical averages is described. This article gives the first rigorous esti-
mates for the error in statistical averages computed from molecular dynamics
simulation based on backward error analysis. It is shown that molecular
dynamics introduces an appreciable bias at stepsizes which are below the sta-
bility threshold. Simulations performed in such a regime can be corrected by
use of a stepsize-dependent reweighting factor. Numerical experiments illus-
trate the efficacy of this approach. In the final section, several open problems
in dynamics-based molecular sampling are considered.
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1. Molecular dynamics

Molecular dynamics is a central component of modern simulation in the
fields of chemistry, physics, materials science, and medicine (Allen and
Tildesley 1987, McCammon and Harvey 1987, Whittle and Blundell 1994,
Verlinde and Hol 1994, Frenkel and Smit 2002, Schlick 2002). It is a pow-
erful, general-purpose technique that allows treatment of a wide variety of
problems such as optimization of molecular structures, computing proba-
bilities of events or averages of functions of molecular configurations. In
some cases, it even allows tracking dynamical processes, such as transitions
from one molecular conformation to another. In non-equilibrium modelling,
molecular dynamics is the high-accuracy tool that enables simulation of
transient behaviour.

In this introductory section, we concentrate on the formulation of molec-
ular dynamics problems, introducing a commonly used classical molecular
model, discussing the role of molecular dynamics simulations and several
historical and mathematical issues related to the numerical methods used
for the purpose. We also introduce the backward error analysis, which is
the foundation for MD simulation. In the following section, we focus on
the use of dynamics to recover averages for molecular systems, introduc-
ing two formulations for Nosé dynamics along with numerical methods. In
Section 3, expansions are constructed for Nosé dynamics methods, allow-
ing interpretation of numerical trajectories as exact solutions of perturbed
systems. Statistical mechanical implications of these perturbations are de-
scribed. In particular, we give a correction term for averages computed
using the Nosé–Poincaré method. Finally, Section 4 contains descriptions
of several open problems and current research topics.

1.1. Molecular models

Molecular dynamics (MD) refers to the simulation of the physical motion of
the atoms of some substance. In this article, we focus on N -body (classical)
models with configurational interactions modelled by a potential energy
function

U(q) = U(q1, q2, . . . , qN ),

where qi ∈ R
3, is the position of the nucleus of the ith atom. The potential

energy function typically involves 2-body, 3-body or 4-body terms,

Uij(qi, qj), Uijk(qi, qj , qk), Uijkl(qi, qj , qk, ql).

The precise form of these few-body potential energy functions will be related
to the material under study (sometimes this is referred to as the chemistry

in a molecular dynamics model). The use of a single potential energy func-
tion to describe the nuclear interactions makes a simplifying assumption,
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the Born–Oppenheimer ansatz, that the electronic structure relaxes instan-
taneously relative to the nuclear motion.

Each interaction term gives rise to certain forces which are obtained as the
gradient of potential energy. The typical form of the short-range pairwise
interaction used in MD is due to van der Waals and is most often modelled
by a Lennard–Jones potential:

φLJ
ij (qi, qj) = 4ǫij

((

σij

rij

)12

−

(

σij

rij

)6)

, rij = ‖qi − qj‖.

Such a term is incorporated between each pair of atoms, so the coefficients
ǫij and σij depend on the particular types of atoms involved.

Because of the strong repulsion for r → 0, the atoms stay well separated.
As the Lennard–Jones potential tends relatively rapidly to zero as r → ∞,
we describe this as a short-ranged term. In practice the potential is cut off
to zero outside some fixed radius. (How this is done may have important
ramifications for the quality of numerical results, as discussed in Section 2.)

In addition to Lennard–Jones potentials, we may have length bonds mod-
elled as linear springs with rest-length

φl.b.
ij (qi, qj) =

1

2
kij(rij − r0

ij)
2.

In many cases these springs are very stiff compared to other potential terms,
so the associated time-scales of vibration play an important role in deter-
mining the usable simulation time-step.

Another type of two-body interaction is the electrostatic term

φC
ij(qi, qj) =

QiQj

Drij
,

where D is a constant. Because the Coulomb potential falls off slowly with
distance compared to the Lennard–Jones potential, we say that it is long-

ranged. In practice, all pairs of charged particles will have a nontrivial
Coulomb interaction and each of these terms must be computed with some
level of precision. Many efforts have been made in recent years to reduce
the cost of long-ranged force computation, with some success (Barnes and
Hut 1986, Darden, York and Pedersen 1993, Greengard 1994, Krasny and
Duan 2002), although we do not consider this issue here.

Three-body potentials often arise as penalty terms to control the angles
made by chemically bonded triples of atoms (angle bonds):

φa.b.
ijk (qi, qj , qk) =

1

2
kijk(θijk − θ0

ijk)
2.

The angle θijk is defined in terms of the positions as

θijk = arcsin
(qi − qj) · (qj − qk)

rijrjk
.
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Empirical three-body potentials are also used to simulate materials such as
graphite. In this way, bond breakage and formation can be simulated in a
limited way (Takai, Lee, Halicioglu and Tiller 1990). The cost of simulat-
ing with such a potential is large, however, because of the vast number of
interaction terms and potentials that need to be computed (O(N3)).

In the most straightforward case, the potential interactions are homoge-
neous distance potentials,

U =
N−1
∑

i=1

N
∑

j=i+1

φ(‖qi − qj‖),

but even in this case, the structure of the potential energy landscape and
resulting motion are both very complicated, owing to the combined effects
of the many terms.

The subject of molecular dynamics may be deemed unappealing as an
area for mathematical research, in part because of the complexity of the
molecular description. Fortunately it is generally possible and useful to
work with elementary examples and model problems to understand basic
principles and to test numerical methods. The simplest of these is the
harmonic oscillator

d2q/ dt2 = −ω2q,

with energy function U(q) = ω2q2/2. A slightly more interesting model is
the ‘springy pendulum’ in two or three dimensions:

U(q) = k(r − L)2/2, r = ‖q‖.

A more sophisticated model problem, which we will consider later, is
a chain of seven atoms connected sequentially, the Hamiltonian for this
system being

H(q, p) =
1

2

N
∑

i=1

m−1
i ‖pi‖

2+
κ

2

N−1
∑

i=1

(ri,i+1−r0)2+
N−1
∑

i=1

N
∑

j=i+1

φLJ(qi, qj). (1.1)

We took ǫ = 1, κ = 1000, and r0 = 1. Each atom interacts with the other
six atoms through the Lennard–Jones potential. With a large value of the
constant κ, near the minimum of energy, this system behaves as though the
springs were essentially rigid rods.

A classic model which is extremely useful for understanding MD issues
for larger systems is the Lennard–Jones system with periodic boundary
conditions, described by a Hamiltonian of the form

H(q, p) =
1

2

N
∑

i=1

m−1
i ‖pi‖

2 +
∑

L̂

N−1
∑

i=1

N
∑

j=i+1

φ̂LJ(qi, qj + L̂). (1.2)
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Here L̂ is a multi-index which ranges over vectors (a, b, c)T , where a, b and

c are −L, 0 or L; L defines the box width; φ̂ is usually a smoothly cut-off
version of the Lennard–Jones potential.

1.2. The role of molecular dynamics

This paper is about obtaining trajectories that explore the potential energy
landscape or thermodynamics of a molecular system. The most straight-
forward approach is to simulate the dynamics of Newtonian equations of
motion:

miq̈i = Fi,

where Fi = −∇qi
U is the force acting on the ith atom, and mi is the

positive mass of the ith atom. The alternative way of writing this system
is as follows:

dq

dt
= M

−1p, (1.3)

dp

dt
= −∇U(q), (1.4)

where now q = (q1, q2, . . . , qN ) is a 3N -dimensional vector of all posi-
tions, p = (p1, p2, . . . , pN ) is the vector of associated momenta, and M =
diag(m1, m1, m1, m2, m2, m2, . . . , mN , mN , mN ) is a matrix of masses. The
system is associated with a Hamiltonian (energy function) of the form

H(q1, q2, . . . , qN , p1, p2, . . . , pN ) =
1

2

N
∑

i=1

m−1
i ‖pi‖

2 + U(q1, q2, . . . , qN )

=
pT

M
−1p

2
+ U(q), (1.5)

which is a first integral of (1.3)–(1.4). There is always a severe limitation
in MD simulation because the use of a detailed potential energy function
U means that there will be very rapid oscillatory components in the dy-
namics; this limits the time-step and hence the maximum time interval on
which simulation is possible. In current practice, typical simulations are
performed on nanosecond time intervals, with unusual examples stretching
to a microsecond.

To understand the context in which molecular dynamics is used, it is
necessary to understand that molecular simulation comprises a wide range
of tasks aimed at understanding different aspects of molecular structure
and dynamical behaviour. One important question commonly asked about
a given system is this: What is the global minimum of U for all q =
(q1, q2, . . . , qN )?
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Figure 1.1. The six minimizing configurations of the atoms of a 7-atom chain.

The idealized minimizing structures for the seven-atom chain (in the con-
straint-chain limit) all consist of the placement of six atoms at equally
spaced points on a circle of radius 1, with the seventh at the centre. Up
to symmetry, there are six different minimizing configurations, as shown in
Figure 1.1. Note that all these structures have zero harmonic energy and
the same Lennard–Jones energy.

The determination of global minima in molecular systems becomes rapidly
more difficult as the dimension of the system increases, owing to the prolif-
eration of local minima and the general corrugation of the energy landscape.
Another problem we sometimes hear spoken of in connection with molecular
systems is the configurational sampling , or the averaging of a function of q
with respect to a suitable density function. A third challenge is to resolve
the long-term chaotic behaviour in the potential field U , ascribing to the
ith atom some suitable mass. From the point of view of numerical analysis,
these are all exceptionally difficult problems

In fact, though, the problems mentioned are all accessible to the powerful
ideas of statistical mechanics. In a molecular system, the atomic motion
is highly constrained by the laws of probability. The trajectories of the
molecular dynamics model may be chaotic, but they fill out a large region
of space, mapping the energy surface and allowing us to perform integration
(sampling) using the dynamics. The states of lowest energy are visited most
frequently, roughly in accordance with Boltzmann’s hypothesis, so that min-
ima of the potential are frequented by the dynamics; this allows dynamics
to play a role in determining minima. Molecular dynamics, if properly im-
plemented, provides one of the few general-purpose tools for study of the
molecular landscape. Indeed, the presentation of molecular dynamics as the
numerical solution of a conservative systems of ordinary differential equa-
tions is a bit misleading, because it disguises the real use which is made
of MD simulation: typically the mapping of the energy surface or, from an
alternative perspective, understanding of certain features of a probability
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distribution function in a 6N -dimensional phase space. Molecular dynamics
should be viewed as one technique of several available for analysing the ac-
cessible phase space. In this sense it is an alternative to Metropolis Monte
Carlo simulation that samples phase space by taking a sequence of discrete,
randomized steps. In some cases MD is a more efficient tool than Monte
Carlo, since, in essence, steps taken with MD are automatically ‘accepted’.
MD is typically also more precise than Monte Carlo in that it offers the
potential of recovering dynamical information as well. It can answer ques-
tions such as: How long does it take on average to make the transition from
basin A to basin B? This is not possible with standard Monte Carlo simu-
lation without simplifying assumptions from transition state theory (Voter,
Montalenti and Germann 2002).

Because of its flexibility and ease of implementation, molecular dynam-
ics has become the ‘high-accuracy’ tool of choice in simulation of materials
for engineering and biological sciences applications. Despite its simplicity
(the ideal model is quantum-mechanical, after all), molecular dynamics can
afford insight into a surprisingly wide variety of relevant issues, from char-
acterizing the progressive formation of a crack in a crystalline material to
protein docking and the study of folding pathways, essential procedures in
the field of rational drug design.

1.3. A brief history of MD integrators

In this subsection, we look at the development of molecular dynamics meth-
ods from the point of view of the numerical analysis. Let us summarize a few
features that we expect to characterize good methods. Because low-accuracy
trajectories are generally needed (partly because of the many errors already
introduced at an early stage of the modelling, only phenomenological ques-
tions are usually asked), numerical analysts would propose to use low-order

methods. In order to get good long-term stability while approximating the
system in the basins where it spends most of its time, one would expect
to use numerical methods with neutral stability. Because the forces are
complicated and dominate the cost of computation, one would expect to
find explicit methods to be of the greatest value. Although many different
methods could be applied for the purpose, the need to be able to take a
very large number of steps with stable long-term behaviour places severe
constraints on the integration technique.

The first MD simulation is attributed to Alder and Wainwright (1957),
a simulation of hard spheres which already demonstrated both the simula-
tion technique and some of the prospects of such simulations for revealing
the properties of liquids. Their method used periodic boundary conditions
(which had already been introduced much earlier in Monte Carlo simula-
tions) and included computation of radial density functions.
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Rahman (1964) showed that a molecular dynamics simulation could be
performed using a cut-off continuous potential (based on Lennard–Jones),
the system described by (1.3)–(1.4) for 864 argon atoms in a periodic box,
and used a predictor–corrector method. Simulations involved a time-step of
10 femtoseconds, each of which took about 40 seconds to compute using the
most advanced computers of the day. Total simulation time was limited to
about 10 picoseconds. Verlet (1967) described his performance of a similar
calculation using enhanced methodology. Like Rahman, he used 864 atoms
in cut-off Lennard–Jones interaction, together with a book-keeping device
to limit calculation of pairwise forces to only those atoms which are likely
to yield a nontrivial interaction.

In Rahman’s paper the integration method used consisted of two itera-
tions of a predictor–corrector method based on the trapezoidal rule; this
method already shows substantial artificial behaviour in even relatively
short simulations due to numerical instability. Verlet suggested instead
using a scheme that is equivalent to the leapfrog/Störmer’s rule, and this
has withstood the test of time. The Verlet method can be written as (super-
scripts here indicating time-step number):

qn+1 = qn + hM
−1pn+1/2, (1.6)

pn+1/2 = pn −
h

2
∇U(qn), (1.7)

pn+1 = pn+1/2 −
h

2
∇U(qn+1). (1.8)

This method is second-order. Verlet was able to compute simulations at
about the rate of a second per time-step, benefitting from a combination of
his better numerical methods and rapid advances in computer hardware.

During the 1970s, MD methodology continued to mature. While the orig-
inal simulations of simple liquids such as argon could rely on the pairwise
additive nature of the force field, more complicated liquids seemed to require
a sophisticated multibody potential. Rahman and Stillinger (1971) repre-
sented the many body terms by an effective pair potential and were thus
able to perform a simulation of 216 water molecules, using Ewald summation
to compute long-ranged forces of interaction, and a fourth-order predictor–
corrector method to integrate the rigid body equations of motion.

In addition to the various potential energy terms, molecular dynamics
models often incorporate additional modelling complications. For example,
it is common in biological molecular modelling to freeze some of the chemical
bonds at their minimizers, in which case we introduce constraints such as

‖qi − qj‖ = lij .

Even some of the angle bonds may be so constrained. The m constraints
introduced in this way may be described as a system of equations g(q) = 0,
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with a vector function g : R
3N → R

m. These then modify the form of the
dynamical system, resulting in equations of the form

dq

dt
= M

−1p,

dp

dt
= −∇U(q) − g′(q)T λ,

g(q) = 0.

Here λ is a vector of Lagrange multipliers which must be solved for in tan-
dem with the physical variables q and p. One approach that has resurfaced
several times over the years is to attempt to reduce this system to ODEs,
e.g., by constraint differentiation, but this approach has not been found to
be effective in general MD simulation, and the constrained equations are
typically solved directly. Ryckaert, Ciccotti and Berendsen (1977) intro-
duced the SHAKE method for this purpose, and used it to model a system
with chemical bonds. The method can be written as

qn+1 = qn + hM
−1pn+1/2,

pn+1/2 = pn−1/2 − h∇U(qn) − hg′(qn)T λn,

g(qn+1) = 0,

where one views the momenta and positions as evolving on grids which are
staggered by a time offset of h/2. It is also possible to rewrite this method
in a one-step form and to view it as a mapping of the co-tangent bundle of
the constraint manifold {q | g(q) = 0}.

Advances in computer technology, together with improved availability of
parametrized force fields, triggered efforts by several groups to apply molec-
ular dynamics machinery for the direct simulation of proteins. McCammon,
Gelin and Karplus (1977) reported the results of their study of bovine pan-
creatic trypsin inhibitor (BPTI), selected due to ‘its small size . . . high
stability . . . and accurately determined X-ray structure’. The simulation
was facilitated by the incorporation of hydrogen atoms into heavier atoms
through ‘suitable adjustment of atomic parameters’, reducing the number of
degrees of freedom and allowing larger time-steps through the elimination of
the high-frequency hydrogen bonding interactions. A femtosecond time-step
was used and the simulation performed on an interval of 8.8 picoseconds.

At that time, the understanding of the optimal numerical scheme for
molecular simulation was skewed by the availability of computer power. The
method used by McCammon, Gelin and Karplus was the Gear predictor–
corrector scheme. Van Gunsteren and Berendsen (1977) repeated the BPTI
study, systematically comparing different numerical schemes in a very short
(100-step) simulation, and concluding that a relatively high-order Gear



10 S. D. Bond and B. J. Leimkuhler

Figure 1.2. BPTI (bovine pancreatic trypsin inhibitor) was one of
the first proteins to be investigated by use of molecular dynamics.
In this representation, there are 882 atoms, including hydrogens,
nitrogens, oxygens, carbon and sulphur. The chemical bonds are
shown as sticks joining the atoms. Not shown are the thousands of
water molecules which would typically added to the simulation in
order to simulate the molecule in its normal environment. (Image
created using VMD, courtesy Paul Brenner (Notre Dame).)

predictor–corrector scheme was the optimal choice for general-purpose un-
constrained simulation. In molecular dynamics simulations, the evaluation
of numerical methods (and determination of the quality of a numerical tra-
jectory) must be based on the magnitude of the observed energy drift. From
one time-step to the next, the energy can fluctuate quite considerably in an
MD simulation, regardless of the method, and these local fluctuations are
generally larger in a low-order method than in a higher-order one, at a given
stepsize. A method such as the predictor–corrector scheme does not con-
serve anything, and it will show greater secular drift if the time interval is
long, but it may exhibit a higher efficiency than a low-order method in a
short simulation. It was only when longer time simulations became possible
that the broad superiority of Verlet’s method became obvious.

The 1980s and 1990s saw many advances in force fields, including var-
ious models of water (crucial in protein dynamics) based on dipole and
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quadrupole approximations. At the same time, powerful new methods were
being introduced for quantum simulation, such as the technique of Car and
Parinello, a scheme for incorporating quantum mechanics, which uses a fic-
titious dynamics to develop an approximation to the wave function. In this
approach orthonormality of the orbitals is maintained using the SHAKE
discretization (Car and Parinello 1985). This method was proposed by its
authors as both (1) a method for ground state electronic properties, and
(2) a way to enhance molecular dynamics by allowing simulations that build
the Born–Oppenheimer surface ‘on the fly’, rather than relying entirely on a
parametrized approximation. Although substantially more demanding than
the traditional full classical method, Car–Parinello ideas gradually became
popular as part of MD simulation and are used for a variety of special pur-
poses. These sorts of techniques can be simplified, as by Sprik and Klein
(1988), and used to design a polarizable water model (see also Rick, Stu-
art and Berne (1994)), as well as for more general purposes (Rappe and
Goddard 1991).

Another innovation introduced in the 1980s was Nosé’s dynamical method
(Nosé 1984a), roughly simultaneous with the use of stochastic-dynamical
methods such as Brownian dynamics and Langevin dynamics in molecu-
lar simulation (van Gunsteren and Berendsen 1982, Brunger, Brooks and
Karplus 1984). These techniques opened the door for molecular dynamics
simulations to be used for equilibrium sampling in a constant tempera-
ture (or constant temperature and pressure) ensemble and the computa-
tion of thermodynamical properties such as diffusion coefficients. A focus
of this article is the Nosé-type schemes, and we take up the discussion of
their implementation and use for computational statistical mechanics in the
next section.

1.4. Geometric integrators

As we have seen, during the first decades after molecular dynamics was in-
troduced, increasing attention was placed on understanding the basic prop-
erties of integrators. In addition, many open questions were floating around
regarding the suitability of various schemes for the uses to which they were
being put. In the 1980s, a new development took hold in the physics and
mathematics communities: geometric integration. A geometric integrator
is a numerical method which preserves certain geometric structures of the
exact flow of a differential equation. From at least the late 1960s, the com-
putational physics community had clearly believed that it was important
for a numerical method to mimic the time-reversal symmetry present in
physical N -body systems. If we write the numerical method as a map,

[

qn+1

pn+1

]

= Ψh

([

qn

pn

])

,
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and we define the map R by

R

([

q
p

])

=

[

q
−p

]

,

then we find

Ψh ◦ R ◦ Ψh ◦ R = Id,

where Id is the identity map. A map with this property is said to be time-
reversible. It is straightforward to show that the Verlet method is time-
reversible, but many other methods such as the Gear predictor–corrector
method are not. Another important property, particularly for astronomical
N -body simulation, is the conservation of the angular momentum. If the
potential energy function involves central forces, i.e.,

N
∑

i=1

qi ×∇qi
U = 0,

so that the angular momentum is conserved,

N
∑

i=1

qi(t) × pi(t) = constant,

then the same quantity is conserved from step to step of discretization using
Verlet (1.6)–(1.8):

N
∑

i=1

qn+1
i × pn+1

i =

N
∑

i=1

qn
i × pn

i .

Although remarkable, this property is, itself, of limited value, since most MD
simulations involve the use of periodic boundary conditions which destroy
angular momentum conservation.

Ruth (1983) argued that numerical methods could and should be con-
structed to preserve the symplectic 2-form:1

dq ∧ dp =
N

∑

i=1

dxi ∧ dpxi
+ dyi ∧ dpyi

+ dzi ∧ dpzi
.

The property of the invariance of the 2-form can be restated as

dΨT
h J dΨh = J,

where

J =

[

0 I3N

−I3N 0

]

1 The mathematician de Vogelaere had in fact considered the basic idea much earlier
(de Vogelaere (1956)).
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and dΨh represents the Jacobian matrix of the map Ψh. The proof that
the Verlet method is symplectic is straightforward. Taking differentials of
(1.6)–(1.8) yields

dqn+1 = dqn + hM
−1 dpn+1/2, (1.9)

dpn+1/2 = dpn −
h

2
d∇U(qn), (1.10)

dpn+1 = dpn+1/2 −
h

2
d∇U(qn+1). (1.11)

A term of the form d∇U(q) can be replaced by U ′′(q) dq, where U ′′ is the
symmetric Hessian matrix of U . Moreover, it is straightforward to show
that dq ∧ A dq = 0 if A is symmetric. Hence, from (1.11) we have

dqn+1 ∧ dpn+1 = dqn+1 ∧ dpn+1/2,

then, using (1.9) and a similar argument, we have

dqn+1 ∧ dpn+1/2 = dqn ∧ dpn+1/2,

and, finally, using (1.10),

dqn ∧ dpn+1/2 = dqn ∧ dpn.

A lot of subsequent research has been performed by mathematicians and
physicists both on method construction and on explaining properties of
symplectic methods. This work has confirmed that symplectic methods
such as Verlet are generally superior choices for computing very long tra-
jectories. However, it is important to state clearly that the discovery that
the Verlet method is a good method for atomistic molecular dynamics does
not originate in mathematical observations about symplectic structure, but
in the numerical experience documented in various papers appearing after
1967 which showed that Verlet’s method was more stable and efficient than
alternatives for molecular simulation.

Leimkuhler and Skeel (1994) proved that the SHAKE method is equiv-
alent to a symplectic integrator. This paper looked at both SHAKE and
Anderson’s ‘self-starting’ alternative to SHAKE, known as RATTLE:

qn+1 = qn + hM
−1pn+1/2,

pn+1/2 = pn −
h

2
∇U(qn) −

h

2
g′(qn)T λn,

g(qn+1) = 0,

pn+1 = pn+1/2 −
h

2
∇U(qn+1) −

h

2
g′(qn+1)T µn+1,

g′(qn+1)M−1pn+1 = 0.
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Leimkuhler and Skeel showed that RATTLE is a symplectic map of the
co-tangent bundle of the constraint manifold associated to this problem,
and they also incidentally demonstrated that SHAKE and RATTLE are
formally conjugate (i.e., they generate equivalent numerical trajectories up
to a modification of the initial condition).

During the 1990s, largely due to the success in providing a theoretical jus-
tification for the improved performance of Verlet, SHAKE and RATTLE,
symplecticness took hold as a litmus test for integrators for molecular dy-
namics applications. A particular area where new symplectic integrators
were developed during the mid-1990s, and found to enhance simulation effi-
ciency, was in rigid body molecular dynamics. Until this time, the common
techniques were based on parametrization of rigid body motion by means
of quaternions, resulting in a system which could not be discretized by the
symplectic Verlet method; instead, the usual approach was based on extrap-
olation or non-symplectic Runge–Kutta methods. The results were fine in
short-term simulations, but energy drift was evident as integration times in-
creased. A generalized symplectic treatment of the Euler equations for rigid
body motion was proposed independently by McLachlan (1993) and Reich
(1994), and implemented for systems of rigid bodies, as occur in molecular
dynamics, by Dullweber, Leimkuhler and McLachlan (1997). This method
is now a standard scheme in molecular simulation, where it is sometimes
referred to as the MRDL method. Alternative methods have also been
proposed based on rotation matrices (Kol, Laird and Leimkuhler 1997).
While new types of rigid body methods have been introduced more re-
cently (McLachlan and Zanna 2005, van Zon and Schofield 2007), with
improved accuracy, these methods are not an improvement on MRDL for
standard molecular dynamics simulations, owing to the errors introduced
because of intermolecular forces.

Multiple time-scale methods (Garćıa-Archilla, Sanz-Serna and Skeel 1998,
Hochbruck and Lubich 1999, Hairer and Lubich 2000, Izaguirre, Reich and
Skeel 1999) have been introduced which preserve the symplectic structure,
and have typically demonstrated improved resolution of averaged behaviour
compared to non-symplectic alternatives, particularly when the time inter-
val for simulation is very long.

Besides the symplectic structure, one may wonder about the role of first
integrals and time-reversal symmetry. Although it seems, from practical
experience, that maintaining first integrals alone is not sufficient to allow
long-term simulations to be performed with sufficient accuracy for sampling,
it is far less obvious to which extent time-reversal symmetry is an appropri-
ate foundation for method building for highly chaotic molecular systems.
This property can be mimicked by a numerical discretizaton. There is
numerical evidence that time-reversal symmetry does allow, at some suf-
ficiently small stepsize and for some problems, long-term simulations to
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proceed stably compared to non-time-reversible and non-symplectic meth-
ods, just as a similar statement can be made regarding symplectic meth-
ods. The situation is complicated by the fact that time-reversible methods
are, in many cases, easier to construct than their symplectic counterparts
and sometimes more efficient. An example is the reversible multiple time-
scale methods of Leimkuhler and Reich (2001), which allow resonance-free
multiple scale integration. Another example often cited for the practical
value of time-reversible methods is in the context of Nosé–Hoover simula-
tions for constant-temperature molecular dynamics, which are considered
in the following section, although in this case we favour symplectic alterna-
tives (Bond, Laird and Leimkuhler 1999).

The theoretical ground for the study of symplectic (and time-reversible)
integrators is the concept of backward error analysis, which we next describe.

1.5. Backward error analysis

Traditional ‘forward error analysis’ for ODEs describes the difference be-
tween the exact trajectory and numerical trajectory. For an sth-order nu-
merical method, this is typically expressed in terms of bounds of the form

‖z(tn) − ẑn‖ ≤ C1h
s exp(C2 tn),

where {z(t) | t ≥ 0} and {ẑn | n = 0, 1 . . .} are the exact and numerical
trajectories respectively and h is the time-step size. The constants C1 and
C2 depend on the vector field and the numerical method. Unfortunately,
in the context of molecular simulation, bounds of this form are not very
useful, since C2 is often large, and computing averages requires very large
time intervals. The chaotic nature of molecular dynamics means that any
small numerical errors must result in large ‘forward error’ in the trajectory.

A much better concept of error for molecular dynamics comes from ‘back-
ward error analysis’. Here the difference between the numerical and exact
solution is expressed in terms of a perturbation of the problem or vector
field. These perturbations are derived using the method of modified equa-
tions (Benettin and Giorgilli 1994, Sanz-Serna 1997, Reich 1999, Neishtadt
1984, Hairer 1994, Sanz-Serna and Calvo 1994, Skeel and Hardy 2001, Hairer
and Lubich 1997). The idea is that the numerical trajectory can be made an
arbitrarily accurate approximation if one modifies the equations or problem.
For an sth-order numerical method applied to ż = f(z), one says that f̄r is
an rth-order modified vector field if the numerical trajectory is an rth-order
approximation to the solution of ż = f̄r(z). This modified vector field will
be a function of the stepsize, and is typically expressed in a series expansion
in powers of h:

f̄r(z) = f(z) + hsf[s](z) + · · · + hrf[r](z).

Assuming that f is sufficiently smooth, it can be shown (Hairer 1994) that
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the terms of the series f[i] can be systematically derived in terms of deriva-
tives of f . The process of deriving these terms involves comparing a series
expansion of one step of the numerical method with a similar expansion for
the solution of f̄i.

It is tempting to take the limit as r → ∞ to obtain an exact trajec-
tory which interpolates the numerical trajectory. Unfortunately the series
does not converge in the typical case. Despite this technical difficulty the
modified vector field is still useful as a truncated series. It can be shown
that there is an optimal truncation index for which the difference between
the numerical method and the modified trajectory is exponentially small
(Benettin and Giorgilli 1994, Reich 1999, Neishtadt 1984), and this optimal
index increases as the stepsize decreases.

The power of the method of backward error analysis and the method of
modified equations can be demonstrated in the context of geometric inte-
grators. It can be shown that if the numerical method preserves a partic-
ular geometric structure (e.g., symplectic, time-reversibility), the modified
equations must preserve this same structure. Hence the modified equations
are in the same geometric class as the original problem. For example, if
a symplectic integrator is applied to a Hamiltonian system, the truncated
modified equations to order r must be Hamiltonian:

H̄r(q, p) = H(q, p) + hsH[s](q, p) + · · · + hrH[r](q, p).

It follows that one may view the numerical solution as the nearly exact
solution of a slightly different Hamiltonian system. Let us see how to con-
struct the first terms of such an expansion for the Verlet method applied to
the Hamiltonian in (1.5). Assuming it exists, it can be shown that (since
the Verlet method is time-reversible) H̄r contains only even order terms in
h. Since Verlet is a second-order method, we have s = 2, and

qn = q̄h(nh),

pn = p̄h(nh),

where q̄h(t), p̄h(t) solves the differential equations

dq̄h,i

dt
=

∂H̄r

∂pi
=

pi

mi
+ h2 ∂H[2]

∂pi
+ · · · + hr ∂H[r]

∂pi
, (1.12)

dp̄h,i

dt
= −

∂H̄r

∂qi
= −

∂U

∂qi
− h2 ∂H[2]

∂qi
− · · · − hr ∂H[r]

∂qi
. (1.13)

Expanding the solution of these equations in a Taylor series, we get

q̄h(t + τ) = q̄h(t) + τ
dq̄h

dt
(t) +

1

2
τ2 d2q̄h

dt2
(t) + · · · ,

p̄h(t + τ) = p̄h(t) + τ
dp̄h

dt
(t) +

1

2
τ2 d2p̄h

dt2
(t) + · · · ,
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which we may evaluate at τ = h. The higher derivatives of q̄h and p̄h can
be obtained differentiating the differential equations (1.12)–(1.13):

d2q̄h,i

dt2
=

∑

j

(

∂2H̄r

∂pi∂qj

∂H̄r

∂pj
−

∂2H̄r

∂pi∂pj

∂H̄r

∂qj

)

,

d2p̄h,i

dt2
=

∑

j

(

∂2H̄r

∂qi∂pj

∂H̄r

∂qj
−

∂2H̄r

∂qi∂qj

∂H̄r

∂pj

)

.

At the same time, we can view the Verlet method as defining qn+1, pn+1

in powers of h,

qn+1
i = qn

i + h
pn

i

mi
−

h2

2

1

mi

∂U

∂qi
,

pn+1
i = pn

i − h
∂U

∂qi
−

h2

2

∑

j

∂2U

∂qi∂qj

pj

mj

−
h3

4

(

∑

j

∑

k

∂3U

∂qi∂qj∂qk

pjpk

mjmk
−

∑

j

∂2U

∂qi∂qj

1

mj

∂U

∂qj

)

+ · · · .

Matching the terms of these asymptotic expansions yields a partial differ-
ential equations for the unknown H[k] terms, e.g.,

∂H[2]

∂pi
=

1

6

∑

j

∂2U

∂qiqj

pj

mimj
,

∂H[2]

∂qi
=

1

12

∑

j

∑

k

∂3U

∂qiqjqk

pjpk

mjmk
−

1

12

∑

j

∂2U

∂qiqj

1

mj

∂U

∂qj
.

Fortunately, these equations can be successively solved to yield the desired
expressions, e.g.,

H[2](q, p) =
1

12

∑

j

∑

k

∂U

∂qj∂k

pj

mj

pk

mk
−

1

24

∑

j

∂U

∂qj

1

mj

∂U

∂qj
.

For sufficiently small stepsize, the backward error expansion explains the
remarkable energy conservation of symplectic integrators (e.g., Störmer/
leapfrog/Verlet) over very long (exponentially long) time intervals. A recent
article of Hairer, Lubich, and Wanner in this journal develops the theory of
backward error analysis in relation to the Verlet method and explains some
of its applications in detail (Hairer, Lubich and Wanner 2003). Very notable
in the context of molecular dynamics is the construction of Skeel and Hardy
(2001) of the ‘interpolated shadow Hamiltonian’, by means of which very
high-order approximations of the terms in the backward error expansion can
be computed using a numerical method. For general discussion of geometric
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integration and backward error analysis, the reader is referred to the recent
books on the subject by Leimkuhler and Reich (2005), and Hairer, Lubich
and Wanner (2002).

As an illustration of the usefulness of backward error analysis, a recent
paper used it to examine the cut-off smoothness in MD simulation. As we
have mentioned previously, in a typical MD simulation a box of atoms is sim-
ulated using periodic boundary conditions, e.g., (1.2). The potential φ̂ is a
cut-off Lennard–Jones potential with the cut-off distance determined so that
interactions are limited to less than the box width. Engle, Skeel and Drees
(2005) demonstrated that a highly accurate (24th-order) implementation of
the modified equations computed using an improved implementation of the
interpolation technique of Skeel and Hardy (2001) helps to clarify the effect
of inappropriate cut-off of non-bonded forces. Whereas large fluctuations
seen in the energy itself tend to disguise such subtleties until they have ac-
cumulated sufficiently to become obvious, the much smoother interpolated
shadow Hamiltonian reveals clear jumps at isolated points corresponding to
a C1-smooth restraint function or cut-off. At a given stepsize, for higher-
order cut-offs, the effect of truncation is greatly reduced.

Recently, backward error analysis has been applied with great success to
hybrid Monte Carlo algorithms (Duane, Kennedy, Pendleton and Roweth
1987). In hybrid Monte Carlo, configurations from a constant-temperature
distribution are generated by steps combining randomly sampled momenta
and classical constant-energy molecular dynamics. The acceptance or re-
jection of steps is based on the probabilistic Metropolis–Hastings criterion,
which is a function of the change of energy over the step. If the molecular dy-
namics trajectory is exact, acceptance or rejection can be determined before
the trajectory is computed, which significantly reduces the computational
cost of the method. Unfortunately, one cannot expect exact conservation of
energy for numerically generated molecular dynamics trajectories and com-
putational effort is wasted computing trajectories for rejected steps. To mit-
igate this problem, the targeted shadowing and shadow hybrid Monte Carlo
methods generate a constant-temperature distribution for the modified or
shadow Hamiltonian obtained from backward error analysis. The results
are then reweighted in post-processing to obtain the desired distribution for
the unmodified Hamiltonian (Izaguirre and Hampton 2004, Akhmatskaya
and Reich 2005).

2. Stochastic modelling with chaotic dynamics

Consider a trajectory of some Hamiltonian system started from some initial
configuration and with certain initial momenta. The energy E = H(q, p)
will be conserved. If this energy is low, then the trajectory will be confined
to some basin associated to some minimizing configurations or, more likely,
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some higher-energy metastable state. If the energy is very large, then the
trajectory will wander erratically in phase space, spending much of the time
far from low-energy configurations. Thus we see that it will be necessary
somehow to control the ‘energeticness’ of the trajectory in order to control
the region of phase space that is sampled by the trajectory.

It is difficult to relate the value of energy per se directly to the physical
environment, since it depends on detailed properties of the system under
study. On the other hand, the temperature, typically defined as the average

kinetic energy per degree of freedom in the system, can be taken to be
independent of the specific characteristics of the system under study, and
serves as an invariant macroscopic parameter which can be measured by
placing the given system in contact with a known quantity of some particular
substance (e.g., water, mercury, etc.), i.e., a thermometer.

In molecular modelling, we use temperature in much the same way as we
use it in the laboratory: to calibrate our simulations to a physical environ-
ment. Because temperature (unlike energy) is scale-independent, it is key
to development of multiscale approaches.

Now let us suppose that we wish to compute a trajectory of a system
consistent with a given temperature, say corresponding to room tempera-
ture in a related physical setting. We generally associate the temperature
with the average over time and number of particles of the kinetic energy,
thus it is easy to find a set of initial conditions which are consistent with
this average value – we can just choose the initial momenta appropriately.
However, it must be remembered that temperature is a macroscopic param-
eter, whereas the specific positions and momenta of the system at a given
time specify a microstate. The detailed assignment of kinetic energy for a
given microstate, to be consistent with the target temperature, will have
to take into consideration the entropy of the system. It is very unlikely
that the simple Maxwellian distribution, or some other arbitrarily chosen
distribution of momenta, will be associated to a macrostate at the correct
thermal level, at least in a complicated system. This is the reason why a
temperature control mechanism is usually needed in molecular dynamics.

The means by which molecular dynamics allows us to perform dynamical
sampling has been elucidated in the dynamical systems and ergodic theory
communities. The basic idea is that molecular dynamics generates space-
filling trajectories which gradually fill the accessible region of phase space.
These sampling trajectories then become a tool for computing averages of
functions with respect to a given density of states.

The fundamental assumption in statistical mechanics – that an ensem-
ble average is equivalent to a trajectory average – is known as ergodicity.
Roughly speaking, ergodicity means that almost all trajectories are ‘statis-
tically the same’ so long as the initial conditions are consistent with the
thermodynamic state. Although this assumption seems quite plausible for
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A

B

Figure 2.1. Is every pair of phase points on an energy
surface linked by a dynamical path? In an ergodic
Hamiltonian system, almost every trajectory will visit
a neighbourhood of almost every point of the
associated constant energy surface.

many large systems with nonlinear interactions, one should note that in
many important situations this does not hold (e.g., harmonic solids, pro-
teins with strong chemical bonds, etc.) Furthermore, even if this assumption
is true in the limit as time approaches infinity, it may not be true for any
practical finite time interval. For example, large energy barriers may be
present which prevent the system from thoroughly sampling configuration
space. Despite this difficulty, it is generally believed that ergodicity holds
for some relevant systems in molecular dynamics, such as liquid argon simu-
lated via Lennard–Jones potential (Hansen and McDonald 1986, Allen and
Tildesley 1987, Frenkel and Smit 2002). For the purposes of our own presen-
tation, we will follow the approach taken in the chemical physics literature
and typically assume ergodicity of a certain system in order to prove a con-
sequent result, or we will discuss the construction of methods which may
‘enhance the ergodicity’ in a practical sense, that is, accelerate the compu-
tation of averages. In all cases, then, the final arbiter of success has to be
numerical experiment, which verifies the claims made for a given method
or formulation, demonstrating that they are valid at least to some approxi-
mate degree.

2.1. Statistical mechanics

The macroscopic (thermodynamic) states of a system can be related to the
microscopic (molecular) motion, by averaging with respect to an ensemble
(or distribution) which is invariant under the flow (McQuarrie 1976, Hansen
and McDonald 1986, Chandler 1987, Toda, Kubo and Saitô 1991). An
ensemble is the collection of all the microscopic states which are consis-
tent with the macroscopic description. For example, the microcanonical
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ensemble consists of all microscopic states with the same number of parti-
cles (N), volume (V ), and energy (E). This is the thermodynamic model
for an isolated system, with its state completely specified by these three
variables (NV E). It is assumed that at equilibrium any thermodynamic
measurement should be repeatable, depending only on these variables, i.e.,
independent of the exact evolution of the microscopic motion. If this as-
sumption holds, the macroscopic properties of a system must be described
entirely by the distribution of states.

The time or trajectory average of a function of phase space, B, is simply
the normalized integral of its value over the trajectory:

〈B〉time := lim
t→∞

1

t

t
∫

0

B(z(τ)) dτ.

Here, z(t) is a trajectory or solution to the ordinary differential equation
(ODE) ż = f(z) with initial conditions z(0) = z0. For a typical classical
molecular dynamics simulation, z = (q, p), where q, p ∈ R

3N are the config-
urations and momenta of N particles in three-dimensional space. For the
microcanonical ensemble, the ODE is derived from a Hamiltonian with en-
ergy function or Hamiltonian, H(q, p):

q̇i =
∂H

∂pi
,

ṗi = −
∂H

∂qi
, i = 1, . . . , 3N.

In comparison, the ensemble average of a function, B, is calculated using
a weighted integral (or sum) over all admissible microscopic states:

〈B〉ens =

∫

Γ

B(z)ρens(z) dz.

In this formulation, ρens is a probability density function which describes the
distribution of configurations, Γ. The exact form of this density function will
depend on the thermodynamic constraints imposed on the system. In the
microcanonical ensemble, the distribution of states is uniform on a surface
of constant energy:

ρmc(z) =
1

Cmc
δ
[

H(z) − E
]

.

Here, H is a classical Hamiltonian which provides the energy of each con-
figuration, z = (q, p). The constant of proportionality, Cmc, is chosen to
normalize ρmc (i.e.,

∫

ρmc dΓ = 1). If the system has other first integrals,
e.g., conservation of linear or angular momentum, this must be accounted
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for in the ensemble, and we find

ρmc(Γ) =
1

Cmc
δ
[

H(z) − E
]

δ
[

I1(z) − C1

]

· · ·
[

Ik(z) − Ck

]

,

where each Ii : R
3N → R is constant (with a value of Ci) along the flow.

The connection between the time and ensemble average comes from the
ergodic hypothesis. Clearly the time average is a function of the initial
conditions. However, if the system of equations given by the ODE has a
single invariant measure, ρ, the time average will be independent of the
initial conditions for almost all initial conditions. Furthermore, the time
average can be transformed to a configuration or ensemble average using
this invariant measure to define the ensemble average (Toda et al. 1991).
Hence the ergodic hypothesis can be stated mathematically as

〈B〉ens = 〈B〉time

for all initial conditions outside a set of measure zero.
Computing an invariant distribution for a system of ODEs involves solving

a partial differential equation known as the Liouville equation (Toda et al.

1991) for the evolution of a distribution of configurations in phase space,

∂ρ

∂t
+ ∇z · (ρ f) = 0,

where f is the vector field of the system of ODEs. Rewriting the Liouville
equation in terms of a material derivative, one finds

Dρ

Dt
+ ρ∇z · f = 0. (2.1)

In the case of autonomous Hamiltonian systems, the vector field is diver-
gence-free and one finds that ρ is constant (Toda et al. 1991). For non-
Hamiltonian systems the situation is more complicated. For example, the
constant temperature or ‘canonical ensemble’ prescribes that configurations
are distributed according to the Gibbs distribution:

ρc(z) ∝ exp

[

−
1

kBT
H(z)

]

, (2.2)

where kB is Boltzmann’s constant and T is temperature.

2.2. Nosé dynamics

Let a Hamiltonian system be given with energy function

H(q, p) =
1

2
pT

M
−1p + U(q),

with q and p 3N -dimensional vectors of positions and momenta, respectively.
Let M be a positive definite symmetric mass matrix, and let U be the
potential energy function.
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If the system is ergodic – and many large-scale molecular dynamics prob-
lems are assumed to be (nearly) so – one hopes that all degrees of freedom
are quickly brought into equilibration through natural energetic exchange,
resulting in a well-defined average kinetic energy which can be identified
with the temperature of the system. In practice, however, this process may
take an extremely long time or never be observed on the time-scale of simu-
lation. Moreover, in some cases it is desirable to adjust the temperature or
other parameters which would require re-equilibration to a specified target
temperature, or the system may progress through intermediate, metastable
states; during the transitions, thermal equilibrium may be difficult to main-
tain. In practice, some device, which can be viewed as an artificial thermal
bath, is almost always incorporated to maintain the desired target temper-
ature. Nosé dynamics offers the promise of thermal regulation via a simple
dynamical device, based on substituting a modestly extended dynamics for
the simple constant energy model.

Nosé dynamics is derived from the extended phase space Hamiltonian,

HN = H(q, p̃/s) +
p2

s

2µ
+ gkBT ln s,

where g is the total number of degrees of freedom (including the thermo-
statting degrees of freedom), kB is the Boltzmann constant, and T is the
target temperature at which sampling is desired. µ is a parameter that
effectively allows the strength of dynamic coupling to be adjusted. The mo-
mentum appearing in HN should be treated as canonical to q, whereas the
physical momentum is related to p̃ by the change of variables

p =
p̃

s
,

which suggests an intrinsic rescaling of time. It was shown by Nosé that
canonical sampling can be obtained along (assumed ergodic) trajectories
of HN via the relation
∫ ∫

δ
[

HN −H0
N

]

dp̃1 · · · dp̃3N dsdps = C exp

(

−
1

kBT
H(q, p)

)

dp1 · · · dp3N ,

where the integration is performed over the physically accessible phase space
of the thermostatting variables, (s, ps) ∈ (0,∞) × R.

2.3. Experiment: 256-atom Lennard–Jones system

Without, for the moment, going into the details of how the Nosé dynamics
approach is implemented, we will describe the behaviour of the technique
when applied to a 256-atom Lennard–Jones system with periodic bound-
ary conditions. The density and temperature in reduced units (Frenkel and
Smit 2002) were set to 0.95 and 1.5 respectively. This system is widely
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assumed to be nearly ergodic. The results, for thermal mass parameter µ
ranging from µ = 0.01 to µ = 106 and for numbers of time-steps (sam-
ples) ranging from 103 to 106, are shown in Figure 2.2. These figures chart
the distribution of kinetic energies obtained with the indicated parameters.
What do we observe? For very small µ, we do not sample from the correct
distribution. For very large µ, it takes a much longer time to achieve the
correct distribution. Notice that it starts off shifted. For the largest values
of µ we get the wrong variance. In fact, it starts converging to the micro-
canonical distribution at a shifted temperature before slowly sliding over to
the correct temperature (but wrong distribution).

In Figures 2.3 and 2.4 we show the mean and variance, respectively, in
the various simulations performed with given variation of parameters. We
expect the distribution to approach a chi-square distribution (sum of squares
of normal variables), but with 765 degrees of freedom; this distribution

Figure 2.2. The figures show the convergence of the kinetic energy
distribution with trajectory length for different choices of the thermal
mass parameter µ. Top to bottom: µ = 106, 104, 102, 10, 1, 0.1, 0.01.
Left to right : Number of samples = 103, 104, 105, 106.
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Figure 2.3. Convergence of mean temperature with
number of samples, for different choices of thermal
mass parameter.
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is very close to a normal distribution. The results suggest that for a broad
range of thermal mass, a reasonable sampling is achieved if the interval
of simulation is long enough. Note that the mean temperature does not
converge to the target temperature of 1.5 but to a slightly different value.
This is a consequence of the numerical error which is associated to the
numerical method used; both mean and variance could be brought into
agreement with the expected values.

2.4. Nosé–Hoover and Nosé–Poincaré

While useful for understanding the concept of Nosé dynamics, HN is not
usually recommended for simulation because, on the one hand, computa-
tion of certain types of averages (e.g., autocorrelation functions) requires
data at equally spaced points in time, and, more importantly, the equations
of motion corresponding to HN are poorly scaled for s → 0. The key to
improving the numerical simulation is to use a time transformation to reg-
ularize the equations of motion. Such transformations are widely used in
celestial mechanics simulations to improve numerical stability in the vicinity
of close approaches of bodies. The idea is to replace the differential equation

dz

dt
= f(z),

by a modified differential equation running in a new time,

dz

dτ
= γ(z)f(z),

where the two time variables are obviously related by

dt

dτ
= γ(z).

This is sometimes called a Sundman time transformation. The Nosé–Hoover
reformulation of Nosé dynamics incorporates such a time transformation of
the form

dt̃

dt
= s, (2.3)

where the notation is to suggest that it is the time variable t̃ associated to
HN that one should view as a modification of t.

The equations of motion for HN are

dq

dt̃
= M

−1p̃/s2, (2.4)

dp̃

dt̃
= F, (2.5)
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ds

dt̃
= ps/µ, (2.6)

dps

dt̃
=

p̃T
M

−1p̃

s3
−

gkBT

s
, (2.7)

where F = F (q) = −∇qU is the vector of forces acting on the bodies.
Replacing p̃/s by p in (2.4)–(2.7), we find

dq

dt̃
= M

−1p/s,

dp

dt̃
=

1

s
F −

1

s

ds

dt̃
p,

ds

dt̃
= ps/µ,

dps

dt̃
=

[

pT
M

−1p − gkBT
]

/s.

Using the time transformation (2.3) and identifying ps/µ with ξ gives the
familiar Nosé–Hoover system:2

dq

dt
= M

−1p, (2.8)

dp

dt
= F − ξp, (2.9)

dξ

dt
= (pT

M
−1p − gkBT )/µ. (2.10)

This time transformation destroys the Hamiltonian structure of the equa-
tions of motion. There is, however, a remnant of the original time-reversal
symmetry: (2.8)–(2.10) are invariant under the change of variables

(q, p, ξ, t) → (q,−p,−ξ,−t).

The first integral corresponding to the Nosé Hamiltonian still exists, with
the ‘extended energy’

E(q, p, ξ, η) =
1

2
pT

M
−1p + U(q) +

1

2
µξ2 + gkBTη,

conserved along exact trajectories with

dη

dt
= ξ. (2.11)

2 Note that the constant g is the number of degrees of freedom in the ‘physical system’,
H(q, p). This is in contrast to Nosé’s Hamiltonian which used the number of degrees
of freedom of the ‘extended system’.
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An alternative, due to Bond et al. (1999) (independently derived by
Dettmann (1999)) is to use a Poincaré transformation. Simulation with
the Nosé–Poincaré method is based on the Hamiltonian

HNP = s(HN − H0
N), (2.12)

where the constant H0
N must be chosen so that HNP vanishes at the initial

value, and hence for all time along Hamiltonian dynamics in the extended
phase space.

The equations of motion associated to (2.12) are

dq

dt
= M

−1p̃/s, (2.13)

dp̃

dt
= sF, (2.14)

ds

dt
= sps/µ, (2.15)

dps

dt
=

p̃T
M

−1p̃

s2
− gkBT − ∆HN, (2.16)

where ∆HN = HN − H0
N.

The relation between (2.13)–(2.16) and (2.8)–(2.10) is made clear by the
substitution p = p̃/s and ξ = ps/µ. Then (2.13)–(2.14) are easily seen to be
identical to (2.8)–(2.9), while the last two equations become

ds

dt
= sξ,

dξ

dt
=

1

µ

(

pT
M

−1p − gkBT − ∆HN

)

.

The last equation is easily seen to be identical to (2.10) up to the pertur-
bation µ−1∆HN, which vanishes along the exact solution. However, under
discretization, we do not expect ∆HN to vanish, and trajectories obtained
from the two systems (2.13)–(2.16) and (2.8)–(2.10) will differ considerably
over long time simulations.

To find the ensemble associated with the Nosé–Hoover vector field, we
insert (2.8)–(2.10) in the Liouville equation, (2.1), which results in

Dρ

Dt
= ρ

Nf
∑

i

ξ = ρ g ξ,

since g = Nf is the number of degrees of freedom in the physical system.
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Furthermore, one finds that

d

dt

(

1

2
pT

M
−1p + U(q) +

1

2
µξ2

)

= −ξgkBT,

and hence

D

Dt
ρ =

−1

kB T
ρ

d

dt

(

1

2
pT

M
−1p + U(q) +

1

2
µ ξ2

)

.

Solving for ρ, we find an invariant distribution in extended phase space:

ρNH(q, p, ξ) =
1

C
exp

[

−1

kB T

(

pT
M

−1p

2
+ U(q) +

µ ξ2

2

)]

, (2.17)

where C is a normalizing constant. Note that the extended variable, ξ,
is not coupled to the variables, (q, p), in the distribution above. Hence,
integrating over ξ yields a canonical distribution in (q, p):

∫

ρNH(q, p, ξ) dξ ∝ exp

[

−1

kBT
H(q, p)

]

.

A modified version of this argument can be used to show the same result
for Nosé–Poincaré.

2.5. Separated form

Nosé dynamics has an interesting alternative formulation based on a simple
change of variables. Let s = eθ, ps = e−θpθ; then HN can be seen to be
equivalent to the system described by

ĤN =
1

2
e−2θp̃T

M
−1p̃ +

1

2µ
e−2θp2

θ + U(q) + gkBTθ.

We can next introduce a Poincaré-type time transformation equivalent to
HN → s2(HN − H0

N), yielding the separated form

Ĥ∗

N =
1

2
p̃T

M
−1p̃ +

1

2µ
p2

θ + e2θ(U(q) + gkBTθ − H0
N).

This separation of variables was first suggested by Dettmann and Morriss
(1997); it was further studied and expanded by Leimkuhler (2002). The
method allows a simple visualization of the behaviour of Nosé dynamics.
Consider, for example, a double-well potential described by the potential
U(q) = (q2 − 1)2. The effective potential

Û(q, θ) = e2θ(U(q) + gkBTθ − H0
N)

is graphed in Figure 2.5 for several different values of the parameter γ =
gkBT and a fixed energy H0

N. The figure shows that the introduction of the
temperature parameter T via Nosé dynamics can be directly related to a
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Figure 2.5. Contours of the Nosé effective potential:
γ = 0.2 (left), γ = 0.5 (right).

smoothing of the potential barrier (in a larger-dimensional space). As a con-
sequence, higher temperatures enhance the transition between well basins
in the double-well system.

2.6. Algorithms for canonical ensemble sampling

At this juncture, we mention an important theoretical issue. Even if one
assumes that the exact flow is ergodic, there is no guarantee that the nu-
merical dynamics will be ergodic as well. If trajectory averages converge
in the limit t → ∞, ergodicity may not be ‘observed’ in practice since one
is restricted to finite time intervals. For the class of systems considered
in molecular dynamics, most of the key questions cannot be rigorously ad-
dressed. Preliminary results obtained by Tupper (2007) are of great interest
in this regard, but do not yet give quantifiable predictions which are rele-
vant for general MD simulation. Despite this unresolved concern, we next
describe algorithms for sampling a molecular system from the canonical en-
semble, based on Nosé dynamics. We give a comparison of several alterna-
tive numerical procedures for Nosé–Hoover and Nosé–Poincaré simulation,
including one Nosé–Poincaré method proposed by Nosé himself, clarifying
the relative advantages of the two types of scheme.

The constraint under which we work in typical molecular dynamics ap-
plications is that the potential energy U and vector of force F are relatively
expensive to compute. In fact the number of evaluations of potential and/or
the force may be taken as the measure of computational work in MD sim-
ulation. (The computational cost is not substantially greater to compute
both potential and force at a given point than would be incurred in com-
puting one or the other of these terms.) In practice it is observed that the
only useful algorithms for MD are partially explicit in the sense that no
iteration need be performed at each time-step which would lead to multiple
force evaluations. We term such partially explicit methods force-explicit.
All methods considered in this section are force-explicit with a single U
and/or F evaluation required at each time-step.
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Time-reversible integrators for Nosé–Hoover

The Nosé–Hoover equations are time-reversible. A large number of re-
versible schemes are available. We mention here only two: a scheme due
to Holian, Groot, Hoover and Hoover (1990) which we term Nosé–Hoover

explicit , abbreviated NHE, and an implicit scheme, NHI, from Frenkel and
Smit (1996). The formulas for each of these familiar methods are given be-
low. It is seen that NHI requires the solution of a cubic nonlinear equation,
but this presents no difficulty in practice and in fact both of these methods
can be viewed as force-explicit methods. Both of these methods are also
time-reversible.

Nosé–Hoover explicit (NHE)

pn+1/2 = pn +
h

2
(Fn − ξnpn+1/2),

qn+1 = qn + hM
−1pn+1/2,

ξn+1 = ξn + h((pn+1/2)T
M

−1pn+1/2 − gkBT )/µ,

pn+1 = pn+1/2 +
h

2
(Fn+1 − ξn+1pn+1/2).

Nosé–Hoover implicit (NHI)

pn+1/2 = pn +
h

2
(Fn − ξnpn), (2.18)

ξn+1/2 = ξn +
h

2
((pn)T

M
−1pn − gkBT )/µ, (2.19)

qn+1 = qn + hM
−1pn+1/2, (2.20)

pn+1 = pn+1/2 +
h

2
(Fn+1 − ξn+1pn+1), (2.21)

ξn+1 = ξn+1/2 +
h

2
((pn+1)T

M
−1pn+1 − gkBT )/µ. (2.22)

The last two equations here must be solved together for ξn+1 and pn+1.
The simplest approach is to first solve (2.21) for pn+1:

pn+1 = (1 + hξn+1/2)−1

(

pn+1/2 +
h

2
Fn+1

)

.

Set r = 1+hξn+1/2; then, upon introducing the above expression into (2.22)
and simplifying, we obtain a cubic equation in r,

r3 + d2r
2 + d0 = 0,
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with

d0 = −
h2

4µ
wT

M
−1w,

d2 = −1 −
h

2
ξn+1/2 +

h2

4µ
gkBT,

w = pn+1/2 +
h

2
Fn+1.

Symplectic methods for Nosé–Poincaré

Several symplectic methods have been devised for the Nosé–Poincaré equa-
tions. The first (chronologically) was an application of the generalized leap-
frog method, which for a given general Hamiltonian G(q, p) is written com-
pactly as

qn+1 = qn +
h

2

(

∇pG(qn, pn+1/2) + ∇pG(qn+1, pn+1/2)
)

, (2.23)

pn+1/2 = pn −
h

2
∇qG(qn, pn+1/2), (2.24)

pn+1 = pn+1/2 −
h

2
∇qG(qn+1, pn+1/2), (2.25)

To apply this to the Nosé–Poincaré equations of motion, G here should be
taken to be the time-rescaled Hamiltonian HNP (2.12), q should be replaced
by (q, s), and p by (p̃, ps). When implemented, this method requires the
solution of a quadratic equation, but this presents no difficulty in prac-
tice. Bond et al. (1999) used this scheme to integrate the Nosé–Poincaré
equations, as follows.

Generalized leapfrog algorithm (GLA)

Step 1. Solve for p̃n+1/2, p
n+1/2
s :

p̃n+1/2 = p̃n −
h

2
sn∇U(qn),

pn+1/2
s = pn

s +
h

2

(

(p̃n+1/2)T
M

−1p̃n+1/2

2(sn)2
− gkBT (1 + ln sn).

−
(p

n+1/2
s )2

2µ
− U(qn) + H0

N

)

.

The first of these equations can be solved explicitly. The second requires an

inexpensive quadratic solve for p
n+1/2
s .
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Step 2. Solve for qn+1 and sn+1:

qn+1 = qn +
h

2

(

1

sn
+

1

sn+1

)

M
−1p̃n+1/2,

sn+1 = sn +
h

2
(sn + sn+1)pn+1/2

s /µ.

Step 3. Solve for p̃n+1 and pn+1
s :

p̃n+1 = p̃n+1/2 −
h

2
sn+1∇U(qn+1),

pn+1
s = pn+1/2

s +
h

2

(

(p̃n+1/2)T
M

−1p̃n+1/2

2(sn+1)2
− gkBT (1 + ln sn+1)

−
(p

n+1/2
s )2

2µ
− U(qn+1) + H0

N

)

,

which is an explicit calculation.
Another approach is based on splitting the Hamiltonian into parts that

can be integrated either explicitly or using an additional level of discretiza-
tion. There are a wide variety of such splittings which would work for the
Nosé–Poincaré system. A 3-term splitting with easily integrated terms was
suggested by Nosé (2001):

HNP = H1 + H2 + H3,

where

H1 = s

(

p̃T
M

−1p̃

2s2
+ gkBT ln s − H0

N

)

,

H2 = sU(q), and H3 =
sp2

s

2µ
.

Of course, other splittings are possible. We have experimented with moving
the sH0

N from H1 to H2. In either of these splitting methods, the first
Hamiltonian depends only on p̃ and s and is trivially integrable. The second
involves only q and s and is again trivially integrable. The third gives
equations

dps

dt
= −

p2
s

2µ
,

ds

dt
=

sps

µ
,
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with solution

ps(t) = ps(0)

(

1 +
ps(0)t

2µ

)

−1

,

s(t) = s(0)

(

1 +
ps(0)t

2µ

)2

.

An algorithm can be constructed based on the usual Trotter scheme,
which can be written in the simple form

e
h
2
H3e

h
2
H2ehH1e

h
2
H2e

h
2
H3 ,

where etH represents the flow map (solution map taking a point of phase
space to its evolution through t units of time) of a Hamiltonian system with
Hamiltonian H and the product of exponentials is understood to represent
composition of maps. The details of this method are given below.

A 3-term Hamiltonian splitting method (HSP)

Step 1. Solve H3 for a step of size h/2:

sn+1/2 = sn

(

1 +
pn

s h

4µ

)2

,

pa
s = pn

s

(

1 +
pn

s h

4µ

)

−1

.

Step 2. Solve H2 for a step of size h/2:

p̃n+1/2 = p̃n +
h

2
sn+1/2Fn,

pb
s = pa

s −
h

2
U(qn).

Step 3. Solve H1 for a step of size h:

qn+1 = qn + h(sn+1/2)−1
M

−1p̃n+1/2

pc
s = pb

s − h

(

−
(p̃n+1/2)T

M
−1p̃n+1/2

2(sn+1/2)2
+ gkBT (1 + ln sn+1/2) − H0

N

)

.

Step 4. Solve H2 for a step of size h/2:

p̃n+1 = p̃n+1/2 +
h

2
sn+1/2Fn+1,

pd
s = pc

s −
h

2
U(qn+1).
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Step 5. Solve H3 for a step of size h/2:

sn+1 = sn+1/2

(

1 +
pd

sh

4µ

)2

,

pn+1
s = pd

s

(

1 +
pd

sh

4µ

)

−1

.

2.7. Experiment: seven-atom chain

To illustrate the use of these schemes, the system (1.1) was simulated for
40,000 time-steps, with stepsize h = 0.01. To obtain an initial condition, the
system was first started at a global minimum of energy, the last configuration
shown in Figure 1.1. Random initial velocities were applied to each atom,
corresponding approximately to a temperature (average kinetic energy per
degree of freedom) of T = 0.5. The initial velocities were normalized so that
the total linear momentum was zero. Snapshots of the (constant energy)
dynamics show how the chain evolves over this time interval. At each of
nine equally spaced times, the graphs show a few hundred time-steps of the
positional motion of each atom. Note that the chain unfolds and refolds
itself back to the vicinity (the basin) of a global minimum of potential.

Figure 2.6. Computed configurations of the seven-atom chain as
snapshots of the dynamics at equally spaced points in time.
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Figure 2.7. Illustration of advantage of symplectic integrator
based on Nosé–Poincaré formulation compared to Nosé–Hoover
schemes. Energy errors along trajectories of GLA: symplectic
generalized leapfrog method for Nosé–Poincaré as suggested in
Bond et al. (1999). NHI: implicit Nosé–Hoover method given in
Frenkel and Smit (1996). NHE: explicit Nosé–Hoover method of
Holian et al. (1990).

It is curious to observe that atom 4 (numbering sequentially from one
end), initially at the centre of the structure, is eventually forced away from
that point. When the system re-folds, it is atom 6 which has moved to the
centre. The lack of initial energy applied to the central atom is apparent in
the lack of motion of that atom in the first few frames. This is an ‘unlikely’
state from the perspective of statistical mechanics. We say that the system
was poorly equilibrated. As the system ‘equilibrates’ all the atoms show
approximately the same range of motion.

We compared the behaviour of three methods, two implementations of
Nosé–Hoover and one of Nosé–Poincaré (the one used in Bond et al. (1999)),
based on the generalized leapfrog algorithm. Particularly for large stepsizes,
the symplectic approach is clearly superior. Sample energetic evolution for
the three methods are shown in Figure 2.7, for a million-time-step simulation
with stepsize h = 0.03, just below the observed Verlet stability threshold
for this problem. This result mirrors observations of Bond et al. (1999), as
well as subsequent studies for various generalizations (Sturgeon and Laird
2000, Hernández 2001).

3. Modified distributions and the error of numerically

computed averages

The concept of a geometric (e.g., symplectic) integrator has obvious ap-
peal to the student of classical mechanics. It seems intuitively correct to
demand that a numerical method should mimic as much as possible the
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available structure of the dynamical system, when this is possible to do
without incurring large computational overheads in the process. So much
the better that discrete dynamical systems designed in this way appear to
be related to modified continuous dynamics with appropriate properties.
This observation is purely aesthetic.

The real and practical importance of molecular dynamics comes in the
computation of statistical mechanics using trajectories. The purpose of this
section is to demonstrate that, by using the principles of geometric inte-
gration and the backward error analysis, it is possible to compute effective
estimates of the error in numerically computed averages, and even to correct
those averages by a straightforward reweighting.

Suppose we apply an sth-order numerical method, Ψh, to approximate
the flow of the vector field f . Using backward error analysis (as described
in Section 1.5) we can derive a modified vector field, f̄r, for which Ψh is
an rth-order approximation with r > s. Now suppose f has an invariant
distribution, ρ, which solves the corresponding Liouville equation (2.1). It
is natural to ask if f̄r has an invariant distribution, ρ̄h, corresponding to ρ.
To derive an equation for ρ̄h, suppose

f̄ = f + hsg, and ρ̄h = ρω,

where ω = 1 + O[hs]. Inserting f̄ and ρ̄h in the Liouville equation, (2.1),
results in

Dρ̄h

Dt
+ ρ̄h ∇z · f̄ = 0,

or

ω

(

Dρ

Dt
+ ρ∇z · f

)

+ ρ

(

Dω

Dt
+ hs ω∇z · g

)

= 0.

The first term is zero, since ρ is an invariant distribution of f . Assuming
ρ > 0, which it is for Nosé–Hoover, we can conclude

Dω

Dt
+ hs ω∇z · g = 0.

Assuming ω > 0 and integrating with respect to t results in

ρ̄h =
1

C
ρ ω =

1

C
ρ exp

[

−hs

∫

∇ · g dt

]

, (3.1)

where C is a normalizing constant. We can use (3.1) to obtain modified
distributions of any order, once we have the corresponding modified vector
field. Substituting hsf[s] + · · ·+ hrf[r] for hsg in (3.1) results in the desired
modified distribution.

In general, we expect the error in trajectory averages to depend on both
truncation and sampling errors,

∣

∣〈A〉Num − 〈A〉Exact〉
∣

∣ = O[hs] + O
[

t−1/2
]

,
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where t is the simulation time, and s is the order of the method (Cancès
et al. 2004, 2005). For integrable systems, the convergence with respect
to sampling time is faster, and can be accelerated using filtering techniques
(Cancès et al. 2004, 2005). Similar filtering techniques can be applied
to non-integrable systems, although the improvement is less dramatic (see
Cancès et al. 2004). Here we will ignore the sampling problem, and focus
on the truncation error, which (for ergodic systems) will be described by the
modified distribution. In the following subsections, we derive the modified
distribution for the Nosé–Hoover and Nosé–Poincaré methods.

3.1. Nosé–Hoover

The explicit Nosé–Hoover method (NHE) given in Section 2.6 can be viewed
as an application of the second-order, Lobatto IIIa–IIIb, partitioned Runge–
Kutta method,

zn+1/2
a = zn

a +
h

2
fa

(

zn
a , z

n+1/2
b

)

, (3.2)

z
n+1/2
b = zn

b +
h

2
fb

(

zn
a , z

n+1/2
b

)

, (3.3)

zn+1
a = zn+1/2

a +
h

2
fa

(

zn+1
a , z

n+1/2
b

)

, (3.4)

zn+1
b = z

n+1/2
b +

h

2
fb

(

zn+1
a , z

n+1/2
b

)

, (3.5)

to the partitioned system of differential equations,

dza

dt
= fa(za, zb), and

dzb

dt
= fb(za, zb),

with za = (q, ξ) and zb = (p, η).
Calculating the terms of the modified vector field for a numerical method

is a tedious (but straightforward) task. Since the methods are second-order
accurate, the modified vector field can be written in partitioned form as

f̄a,r = fa + h2fa,[2] + · · · + hrfa,[r],

f̄b,r = fb + h2fb,[2] + · · · + hrfb,[r],

for which it can be shown that the second-order terms are

fa,[2],i =
1

12

[

∂2fa,i

∂za,jza,k
fa,jfa,k +

∂fa,i

∂za,j

∂fa,j

∂za,k
fa,k +

∂fa,i

∂za,j

∂fa,j

∂zb,k
fb,k

−
∂2fa,i

∂za,j∂zb,k
fa,jfb,k −

1

2

∂2fa,i

∂zb,j∂zb,k
fb,jfb,k

− 2
∂fa,i

∂zb,j

∂fb,j

∂za,k
fa,k +

∂fa,i

∂zb,j

∂fb,j

∂zb,k
fb,k

]

, (3.6)
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fb,[2],i =
1

12

[

∂2fb,i

∂za,j∂za,k
fa,jfa,k +

∂fb,i

∂za,j

∂fa,j

∂za,k
fa,k +

∂fb,i

∂za,j

∂fa,j

∂zb,k
fb,k

−
∂2fb,i

∂za,j∂zb,k
fa,jfb,k −

1

2

∂2fb,i

∂zb,j∂zb,k
fb,j fb,k

− 2
∂fb,i

∂zb,j

∂fb,j

∂za,k
fa,k +

∂fb,i

∂zb,j

∂fb,j

∂zb,k
fb,k

]

. (3.7)

Here, summation is implied for terms with repeated indices. Applying (3.6)–
(3.7) to the partitioning of the Nosé–Hoover vector field for NHE, za = (q, ξ)
and zb = (p, η) results in

fa,[2] =
1

12

[

2M−1U ′′q̇ + 2ξ̇q̇ − ξM−1ṗ

−ṗT
M

−1ṗ/µ + 4q̇T U ′′(q)q̇/µ + 4pT q̇ξ̇/µ − 2ξq̇T ṗ/µ

]

,

fb,[2] =
−1

12

[

U ′′′{q̇, q̇} + U ′′
M

−1ṗ + 2q̇T ṗp/µ + 2ξU ′′q̇ − ξ̇ṗ + 2ξξ̇p − ξ2ṗ

−2q̇T ṗ/µ

]

.

where q̇, ṗ, ξ̇, correspond to the vector field of the unmodified Nosé–Hoover
system.

Solving for a modified invariant distribution requires computing

ρ̄NHE
2,h ∝ ρNH exp

[

−h2

∫

∇ · f[2] dt

]

, (3.8)

where ρNH is an invariant distribution of the unperturbed Nosé–Hoover vec-
tor field. A similar procedure can be followed to find a modified distribution
for the implicit Nosé–Hoover method (NHI).

3.2. Nosé–Poincaré methods

As discussed in Section 1.5, when a symplectic integrator is applied to a
Hamiltonian system, we can derive a modified Hamiltonian corresponding to
the modified vector field. Hamiltonian vector fields are divergence-free, and
hence the Liouville equation simply states that the invariant distribution is
constant. This corresponds to the microcanonical distribution (ensemble)

ρ ∝ δ[H(z) − E].

From this we conclude that the modified distribution for the Nosé–Poincaré
methods should be the microcanonical ensemble corresponding to the mod-
ified Hamiltonian,

ρ̄ ∝ δ
[

H̄r − Ē0

]

,

where Hr is the rth-order modified Hamiltonian for a Nosé–Poincaré method
and Ē0 is the initial value of H̄r. We would like to derive a marginal modified



40 S. D. Bond and B. J. Leimkuhler

distribution, ρ̄(q, p), such that

ρ̄(q, p) dp dq =
1

C

∫

s

∫

ps

δ
[

H̄r(q, s, p̃, ps) − Ē0

]

dp̃ dq dps ds, (3.9)

where the integration is over the extended variables s and ps, the ‘real
momenta’ p = p̃/s, and C is a normalizing constant.

Bond et al. (1999) demonstrated that if H̄r is the unmodified Nosé–
Poincaré Hamiltonian, the resulting marginal distribution is the canonical
distribution in (2.2). Following this proof for the unperturbed Hamilto-
nian, we can compute an approximation to the modified marginal density,
ρ̄. Assuming the underlying Nosé–Poincaré numerical method is symplectic
and second-order accurate, we can write the second-order modified Hamil-
tonian as

H̄NP,2 = s

(

H(q, p̃/s) +
p2

s

2µ
+ gkBT ln s − H0

N

)

+ h2 s G(q, s, p̃/s, ps),

where

H(q, p) =
1

2
pT

M
−1p + U(q), sG(q, s, p̃/s, ps) := H[2](q, s, p̃, ps),

and H[2] is the first term of the modified Nosé–Poincaré Hamiltonian. Using
this expression in (3.9) results in

ρ̄(q, p) dp dq =
1

C

∫

s

∫

ps

δ
[

s
(

HN − H0
N + h2G

)]

dp̃ dq dps ds.

Note that we have assumed the initial value of the modified Hamiltonian is
zero (within the order of the expansion). Although this can be achieved by
adding a constant to the modified Hamiltonian, the remaining analysis be-
comes significantly more complicated. An alternative, which we adopt here,
is to make an order h2 modification to the value of H0

N . This can be viewed
as the value of H0

N for which the modified Nosé–Poincaré Hamiltonian,
H̄NP,2, is a Poincaré time transformation of a modified Nosé Hamiltonian,
HN + h2G.

Introducing a change of variables, p ← p̃/s and η ← ln s, results in

ρ̄ =
1

C

∫

ps

∫

η

eNf ηδ

[

eη

(

H(q, p)+
p2

s

2 µ
+gkBTη+h2G(q, eη, p, ps)−H0

N

)]

dps dη,

where Nf is the number of degrees of freedom (effective dimension of p).
The integral over η involves a delta function of the form δ[r(η)]. Assuming
that r(η) is differentiable and has a single, simple root η0, we can apply the
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identity δ[r(η)] = δ[η − η0]/|r
′(η0)|, and integrate over η:

ρ̄ =
1

C

∫

ps

eNf η0

∣

∣

∣

∣

gkBT + h2 ∂

∂η
G(q, eη, p, ps)

∣

∣

∣

∣

−1

η=η0

dps.

The root of r(η), denoted by η0, is implicitly defined by

η0 =
−1

g kB T

(

H(q, p) +
p2

s

2 µ
+ h2 G(q, eη0 , p, ps) − H0

N

)

,

which can solved to any power of h using a series expansion. Before we can
integrate over ps, we will derive the first term of the modified Hamiltonian
for the Nosé–Poincaré methods.

For the generalized leapfrog algorithm (GLA) in (2.23)–(2.25), we note
that the second-order Lobatto IIIa–IIIb partitioned Runge–Kutta method
in (3.2)–(3.5) applied to a Hamiltonian system results in GLA. Substituting
∂H/∂p and −∂H/∂q for fa and fb in (3.6)–(3.7) results in partial differential
equations for H[2], which can be solved in the first term of the modified
Hamiltonian for GLA:

H[2](q, p) =
1

24

∑

j

∑

k

(

2Hqjqk
Hpj

Hpk
+ 2Hqjpk

Hpj
Hqk

− Hpjpk
Hqj

Hqk

)

.

Here, H(q, p) is the original Hamiltonian system, h is the time-step size,
and subscripts indicate partial derivatives. It can be shown that generalized
leapfrog preserves H̄2 = H + h2H[2] to fourth-order accuracy.

To derive the modified Hamiltonian for Nosé–Poincaré GLA, we apply
the above formula to the Nosé–Poincaré Hamiltonian, which yields

H[2](q, s, p̃, ps) =
s

12

[

ps

µ

p̃T
M

−1

s
∇qU(q) +

p̃T
M

−1

s
U ′′(q)

M
−1p̃

s
+

2p2
s

µ2
gkBT

−
1

2
∇qU(q)T

M
−1∇qU(q) −

1

2µ

(

p̃T
M

−1p̃

s2
− gkBT

)2]

. (3.10)

Here we have discarded all HN − H0
N terms since they are zero to order h2.

Inserting (3.10) in the definition of G, we obtain

G(q, s, p, πs) =
1

12

[

ps

µ
pT

M
−1∇qU(q) + pT

M
−1U ′′(q)M−1p +

2p2
s

µ2
gkBT

−
1

2
∇qU(q)T

M
−1∇qU(q) −

1

2µ
(pT

M
−1p − gkBT )2

]

, (3.11)

which is not a function of s, and hence not a function of η. Inserting G in the
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expression for the modified distribution and integrating over ps results in

ρ̄ =
ρc

C̄
exp

{

−
h2

24kBT

[

∑

j

∑

k

2pjpkUqjqk

mjmk

−
∑

j

U2
qj

mj
−

1

µ

(

∑

j

p2
j

mj
− gkBT

)2]}

,

where C̄ is a constant, ρc is the canonical distribution, and we have assumed
g = Nf . Hence, we have shown that the marginal modified distribution for
the Nosé–Poincaré GLA can be written as

ρ̄(q, p) = ρc(q, p)ω(q, p) + O[h4],

where ω is a ‘reweighting’ factor,

ω ∝ exp

{

−
h2

24kBT

[

∑

j

∑

k

2pjpkUqjqk

mjmk
−

∑

j

U2
qj

mj
−

1

µ

(

∑

j

p2
j

mj
−gkBT

)2]}

.

To derive the first term of the modified Hamiltonian for the Hamiltonian
splitting method (HSP), Nosé (2001) used the Baker–Campbell–Hausdorff
formula for a 3-term splitting,

H[2] = −
1

24

[{

{H1, H2}, H2

}

+ 2
{

{H1, H2}, H1

}

+
{

{H1 + H2, H3}, H3

}

+ 2
{

{H1 + H2, H3}, H1 + H2

}]

,

where {·, ·} is the Poisson bracket. Inserting the particular H1, H2, and H3

used in the splitting of the Nosé–Poincaré Hamiltonian results in

H[2](q, s, p̃, ps) =
s

12

[

−2
ps

µ

p̃T
M

−1

s
∇qU(q) +

p̃T
M

−1

s
U ′′(q)

M
−1p̃

s

−
p2

s

4µ2

(

p̃T
M

−1p̃

s2
+ 3gkBT −

p2
s

2µ

)

−
1

2
∇qU(q)T

M
−1∇qU(q)

+
1

µ

(

p̃T
M

−1p̃

s2
− gkBT +

p2
s

2µ

)2
]

.

Here we have discarded all HN −H0
N terms since they are zero to order h2.

The corresponding marginal modified distribution can be derived for this
modified Hamiltonian using the process outlined earlier in this section.

Given an expression for the reweighting factor, ω, we can use it to reduce
truncation error in averages. If both the exact and numerical dynamics are
ergodic, the ensemble (or distribution) average will be the same as the time
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average. To obtain a better approximation of the exact (canonical) average,
we can reweight by dividing by ω:

〈A〉c =
〈A/ω〉Num

〈1/ω〉Num
+ O[h4],

where 〈·〉c and 〈·〉Num correspond to the exact canonical and numerical av-
erages respectively.

3.3. Numerical experiment using Nosé–Poincaré

To verify the backward error theory outlined in the previous sections, we
performed a constant temperature molecular dynamics simulation of a sys-
tem of a 256 particle Lennard–Jones gas with periodic boundary conditions.
The density and temperature in reduced units (Frenkel and Smit 2002) were
set to 0.95 and 1.5 respectively. The time-step size was varied over a range
from 0.012 to 0.0001 resulting in as many as 2 million total time-steps for
the longest simulation.

In Figure 3.1, the instantaneous temperature is shown as a function of
time for a typical simulation. The instantaneous temperature is defined
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Figure 3.1. The instantaneous temperature is shown as a function
of time using a standard per particle kinetic energy estimator.
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through the per particle kinetic energy,

kBTinst :=
1

Nf

∑

j

p2
j

mj
,

where Nf is the number of degrees of freedom. One can show that for
a constant temperature simulation, the instantaneous temperature is not
constant, but instead is nearly normally distributed with mean equal to the
temperature.

In Figure 3.2, the average of instantaneous temperature is shown as a
function of inverse stepsize using a standard average and the proposed
reweighting technique. As expected, the standard average converges quad-
ratically to the correct value since the method is second-order accurate.
What is remarkable is how insensitive the reweighted average is to stepsize.
It converges extremely rapidly, and achieves the correct value to within sta-
tistical error for stepsizes near the stability limit of the numerical algorithm.

We examined the error in the computed temperatures after reweighting.
We found the computation of these errors extremely challenging, with a
high variance and the requirement of extremely long integrations, but ulti-
mately we were able to verify the anticipated fourth-order accuracy in the
reweighted averages (see Figure 3.3).

4. Open questions

In this section, we consider a variety of issues related to the implementation
and enhancement of the Hamiltonian-based Nosé dynamics framework, and
the application of these techniques in complicated systems.

4.1. What is ‘thermostatted molecular dynamics’?

So far, we have avoided a precise definition of what we mean by thermo-
statted molecular dynamics, being content to study the properties of certain
differential equation models that are often referred to by this title. This is in
fact a complex question. Colloquially, a thermostat is a device that regulates
the temperature of a molecular system. In order to discuss the thermostat
precisely, we need to bring into the discussion the dimension of the sys-
tem, and with it the notion that a given system in thermal equilibrium is
effectively a part of an infinite system with which it exchanges energy.

The confusion comes from the fact that the canonical ensemble is just
identified with a precise probabilistic interpretation (equilibrium statistical
mechanics). However, it is evidently not enough to say that thermostatted
molecular dynamics is just an arbitrary canonical sampling process, for then
it would be unnecessary for the dynamics to have anything in common what-
soever with realistic dynamical motions. With that limited interpretation,
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we may as well refer to Monte Carlo simulation as a ‘thermostatted molecu-
lar dynamics’. In the physics literature there appears to be an assumption of
a closer connection between molecular dynamics and thermostatted molecu-
lar dynamics. The natural way to characterize this correspondence appears
to be in terms of an asymptotical approximation with the dimension of the
system. Based on this, let us attempt a definition which is not quite precise
and whose verification would be at best difficult for any standard system.

Definition 4.1. Assume a family of molecular models defined for a se-
quence of numbers of degrees of freedom {Ni}, N1 < N2 < · · · with micro-
scopic Hamiltonian description H(w = (q, p); N). We also consider a family
of bulk (intensive) properties, defined as averages of microscopic quantities
fN (functions of the corresponding 2N -dimensional space) whose canonical
averages converge in the limit of increasing particle number to the average
of a limiting observable f .

Suppose that for each H(w; N) there is a modified dynamics, which gen-
erates trajectories wN (t) = (qN (t), pN (t)) as follows.

(1) For almost all initial values, wN (t) is a canonical sampler, i.e.,

lim
S→∞

1

S

S
∫

0

fN (wN (t)) dt =

∫

fN (w)e−
1

kT
H(w;N) dw,

where the latter integration is performed over the phase space of the
N -degrees-of-freedom model.

(2) Temporal correlation functions computed from dynamics of the thermo-
statted molecular model approximate corresponding temporal correla-
tions of the microcanonical system, as N → ∞. By this we mean that
a function of the form CN defined, for almost any trajectory wN of the
modified dynamics, by

CN (τ) = lim
S→∞

S−1

S
∫

0

wN (t + τ)T BwN (t) dt,

for some arbitrary matrix B, converges asymptotically to its micro-
canonical equivalent in the large N limit.

Under these conditions we refer to the modified dynamics as a thermostatted
molecular dynamics.

As we have indicated, this is probably not a good practical definition, since
it is quite difficult to verify condition (2), except in special circumstances.
In the context of Nosé dynamics, condition (1) is immediately verified by
Nosé’s original paper.
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4.2. What is the role of numerical error in sampling dynamics?

On the surface this appears to be a simple question: for sufficiently small
steps, we assume the method provides improving accuracy on any given
time interval. This is typically made rigorous by numerical analysis which
provides error bounds and estimates for computational methods, or at least
for idealized model problems, or, in our case, by the backward error analysis
which was the subject of the previous sections. However, the strong con-
straint we work under in molecular simulation is the need to push methods
to their limits by increasing time-step size. This means that, in real-world
molecular simulation, we generally allow some error to be introduced into
the computation of a trajectory.

It is commonly supposed that any explicit numerical method with fixed
time-step is destabilized by a sufficiently large velocity of any particular
atom. When we generate sampling dynamics, we expect the momenta to
be drawn from a normal distribution, which is not compactly supported.
Although the tails of the normal distribution are small, the practical con-
sequence of sampling dynamics is that the stability threshold must depend
on temperature. We could imagine that, in any sufficiently long sampling
trajectory computation, if we are not too far below the threshold, there will
be occasional events in which the stepsize is sufficiently large that the tenets
of backward error analysis fail, or, at least, that the constraint introduced
by backward error analysis is not strong.

In the context of thermostatted molecular dynamics, this raises two pos-
sible scenarios. First, the success of molecular dynamics may hinge on lim-
itation of the sampling. This could even be introduced in a practical and
explicit way by adding some sort of dynamic restraint to prevent certain
types of excursions which lead to instability. The second scenario is that
the thermostat acts as a sort of reservoir for numerical error. This could
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Figure 4.1. Energy errors vs time for two different stepsizes.
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explain why the NHI scheme, which appears to show obvious instability in
Figure 2.7, is a widely used and popular scheme. The method controls the
temperature of the physical variables well, even as the auxiliary thermostat
variables show large and growing deviations from the initial state.

To illustrate, we include here a graph (Figure 4.1) showing the extended
energy error at two stepsizes using a Nosé–Poincaré method (based on gen-
eralized leapfrog) for the seven-atom chain model. In simulation, the growth
of energy error is associated to the collisional dynamics of individual pairs of
atoms. At isolated points along the trajectory, collisions (close approaches
of the atoms) are observed which cause an increase in energy. When the
stepsize is very large (or the temperature is very large), these energetic col-
lisions may result in a catastrophic chain reaction, with the isolated strong
collision causing one after another. However, there is often, as here, a sub-
stantial grey area (a large range of stepsizes) where this type of explosion
in energy is never observed, but where the tenets of backward error analysis
nevertheless fail to hold.

In our example, backward error analysis does not appear to constrain
error growth at h = 0.03, as we observe an erratic drift in the extended
energy. However, temperature is well controlled in both simulations, and the
simulations result in good sampling of the energy landscape. If we removed
the graph for h = 0.03, and took a closer look at the graph for h = 0.01, we
would observe the same jumps/drift as for h = 0.03, just with substantially
smaller magnitude and a slower growth rate. In practice, the simulation with
h = 0.01 may well be no better than that for h = 0.03, for practical purposes,
and, since larger stepsizes mean that longer intervals can be covered in the
same amount of wall clock time, it is not unlikely that an experimenter
would opt for the larger stepsize. If the key feature of thermostatted MD
is control of temperature, and this can be obtained as well or better by use
of Nosé–Hoover methods, or other methods, the importance of symplectic
methods and of a perturbed Hamiltonian expansion is in doubt.

This example, which is hardly atypical, raises important questions regard-
ing the basis for relying on symplecticness as a key criterion for molecular
dynamics integrators. On the other hand, at present, nothing is known
regarding the statistics of jumps observed in the energy (or rather the
shadow energy) in molecular simulation in the case that backward error
analysis fails.

Finally, we mention that there are a variety of different geometric prop-
erties that are associated to molecular models: first integrals, time-reversal
(TR) symmetry and symplectic structure. Although it seems, from prac-
tical experience, that maintaining first integrals alone is not sufficient to
allow long-term simulations to be performed with sufficient accuracy for
sampling, it is far less obvious to which extent TR symmetry is an appro-
priate foundation for method building for highly chaotic molecular systems.
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There is numerical evidence that TR symmetry does allow, at some suffi-
ciently small stepsize and for some problems, long-term simulations to pro-
ceed with good energy conservation compared to non-time-reversible and
non-symplectic methods, just as a similar statement can be made regarding
symplectic methods. The situation is complicated by the fact that time-
reversible methods are, in many cases, easier to construct than their sym-
plectic counterparts and sometimes more efficient. Moreover, there are ex-
amples of efficient numerical methods that are not only non-symplectic, but
are also not time-reversible, volume- or integral-preserving, but which ap-
pear to give good long-term averages in molecular simulations (Leimkuhler,
Legoll and Noorizadeh 2007), although it is clear by now from vast nu-
merical experience that most of the popular molecular dynamics integra-
tors are symplectic, or at least time-reversible. It may well be that these
properties make it easier for an integrator to be effective, but are not
essential.

Leaving aside these weighty concerns, we ask the more practical question:
Can the stability of the methods mentioned for simulating Nosé dynamics
be improved upon by attention to heuristic considerations?

4.3. Can we enhance stability in Nosé dynamics simulations?

Designing effective schemes for Nosé dynamics and variants is obviously
crucial to implementation as a practical tool. The importance of this is
most dramatic in the case of the generalized thermostat chains mentioned
above. For example, in recent work, recursive multiple thermostats were
applied to simulate an alanine dipeptide model (Barth, Leimkuhler and
Sweet 2005). It was found that enhanced ergodicity was possible compared
to more traditional Nosé–Hoover chains (Martyna, Tuckerman, Tobias and
Klein 1996, Jang and Voth 1997), but the results were disappointing in the
sense that numerical stability was clearly compromised and small time-steps
were needed.

Since the cost per time-step is similar for all the methods of interest, and
we are mostly limited by stability rather than accuracy, the time-step size
restriction is essentially the measure of efficiency of a method. In what fol-
lows we describe some preliminary ideas to increase the stability threshold.

In Nosé–Hoover, we always work with a physical momentum variable p.
On the other hand, in each of the symplectic methods mentioned above,
the momentum p̃ and the thermostat variable s are computed at staggered
time points. This appears to raise the possibility of an instability when
s approaches zero compared to the situation where p̃ and s are computed
simultaneously within the method at the same time level. In that case
we can view the scheme as evolving, instead of p̃, the physical momentum
p = p̃/s. There appears to be no obvious way to generate a symplectic
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method that works with the physical momentum using generalized leap-
frog, since if we rearrange the equations in applying this method or a variant
thereof, it will cease to be symplectic. On the other hand, it is possible to
adjust the symplectic splitting of H so that p is evolved instead of p̃ by
using a Hamiltonian splitting. All we need to do is to make sure that the
terms

Hps = s
p2

s

2µ
,

and
Hq = sU(q),

which are the only terms of HN that directly involve ps and q, are evolved
simultaneously. As one example, we could use

H1 = Hps + Hq = s
p2

s

2µ
+ sU(q)

as the basis of our splitting, and either set H2 = H − H1 or further split
this term. It is also necessary to assume that only H1 involves q and ps.
(Technically these variables could be reintroduced in other terms of the
splitting, but it is unlikely to be advantageous in any case.)

Balanced methods

A potential problem exists with all the splitting methods mentioned so far.
Let us reformulate the integrator in terms of the physical momentum p and
ξ = ps/µ (the same variables as used in Nosé–Hoover). The differential
equations corresponding to H1 can be written as

dp

dt
= F − ξp, (4.1)

ds

dt
= sξ, (4.2)

µ
dξ

dt
= −

ξ2

2
(4.3)

(q constant). This system is similar in appearance to the Nosé–Hoover
formulation, although the force F is here fixed and the control law (4.3) is
different. H2 gives rise to

dq

dt
= M

−1p,

µ
dξ

dt
= −

∂H2

∂s

=
pT

M
−1p

2
− gkBT (1 + ln s), (4.4)
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when written in terms of the physical momentum.

In the Nosé–Hoover equations of motion, the ‘force’ acting on the ther-
mostat variable has zero mean and is close to zero when the average kinetic
energy is close to the target temperature, i.e., when the system is large and
near thermal equilibrium. In the Nosé–Poincaré method, this equation is
slightly perturbed, but by a term which typically remains small (O(h2)) on
exponentially long time intervals (or, anyway, throughout a typical molecu-
lar simulation, as can be verified in retrospect by monitoring the extended
energy error ∆HN ). Under discretization, it is desirable that the thermo-
stat momentum be updated from an equation that maintains this special
feature, in order to limit oscillations of the thermal variable (see Figure 4.2).
The methods proposed so far for Nosé–Poincaré do not retain this feature.

To correct the physical momentum method mentioned above, it suffices
to use instead the following splitting terms:

Hb
1 = s

p2
s

2µ
+ sU(q) + gkBTs ln s − sH0

N −
1

2
skBT,

Hb
2 =

p̃T
M

−1p̃

2s
+

1

2
skBT

It is easily verified that this is a valid splitting of H. After writing the

tntn tn+1tn+1 tn+2tn+2 tn+3tn+3

psps

H1H1 H2H2

(a) (b)

Figure 4.2. Illustration of balanced method. (a) In an unbalanced
scheme, relatively large oscillations in the internally computed
thermostat momentum are introduced which must cancel to make
a small correction. In a balanced method (b), the oscillations are
controlled in each substep.
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differential equations on this Hamiltonian we obtain, for Hb
1, the system

dp̃

dt
= sF,

ds

dt
= sps/µ,

dps

dt
= −

p2
s

2µ
− U(q) − gkBT (1 + ln s) + H0

N −
1

2
kBT.

However, we may rewrite the latter equation in the form

µ
dξ

dt
=

pT
M

−1p

2
−

1

2
kBT + ∆HN ,

where we have used the previous definitions of ξ and p. Along a symplectic
numerical trajectory (i.e., generated by iterating a symplectic integrator),
we see that when the Hamiltonian system is near to thermal equilibrium,
then the thermostat variable will be subject to small perturbations.

Hb
2 gives rise to the equations of motion

dq

dt
= M

−1p,

dps

dt
=

1

2
(pT

M
−1p − gkBT ),

which is, once again, a balanced system in the sense introduced above.
This splitting is a little different from those typically suggested, in that

the Hb
1 term is not easily integrated (it is formally integrable, but the reso-

lution of the motion with time is not trivial). A more common approach is
to look for splittings of the equations into pieces which are either trivialized
or which are easy to integrate in the sense that they are low-dimensional
and can be treated inexpensively by a general-purpose symplectic method
such as (2.23)–(2.25). Such a method could of course be employed to solve
Hb

1. A conceptually simpler approach is not to concern oneself with obtain-
ing exactly integrable problems, but rather to suppose the existence of an
accurate ‘black box’ ordinary differential equation solver which is capable of
producing solutions to some part of the split system to available numerical
precision (i.e., to rounding error). After all, Bessel functions and Jacobi
elliptic functions are examples of solutions to differential equations we are
perfectly comfortable to compute using such accurate numerical codes pro-
vided in the form of numerical libraries.

This approach could have stability benefits and it still produces a sym-
plectic integrator (to within the tolerance of the numerical solver used) if
accuracy is controllable and the cost of solving the subsystems accurately is
contained. It should be recalled that in typical large-dimensional molecular
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dynamics simulations, the cost of computing a handful of thermostat vari-
ables, even very accurately, will quickly pale into insignificance compared
to the cost of computing molecular dynamics forces which grow rapidly
with system size. Many numerical methods are available to integrate the
small-dimensional problem, including a variety of high-order variable step-
size methods, as discussed in Hairer, Nørsett and Wanner (1987).

In limited experiments, however, it appears that the balanced methods
have only shown modest improvement in usable stepsize for general MD
models. More extensive experimentation is required to fully clarify this
picture.

4.4. Can we improve sampling efficiency?

There are two distinct types of situations in which the Nosé dynamics meth-
ods may be employed. First they may be used for sampling near the equi-
librium state of an ergodic system such as a Lennard–Jones liquid. Then
the task of the thermostat is typically to maintain by small corrections the
equilibrium state and/or to allow adjustment of the temperature from an
arbitrary initial condition under a relatively slow change while maintaining
the system near equilibrium. The second use of thermostats is for studying
systems which are far from equilibrium, e.g., because of inadequate strong
coupling or poor choice of initial data. In this case the thermostat (or more
likely, a chain of thermostats) is expected to add the necessary ergodicity
so that the system can achieve equilibrium.

One case where this occurs is when the system is dominated by har-
monic interactions. For example, biomolecules with stiff chemical bonds
will present such difficulties. In materials science, it is not uncommon to
compute the absolute free energy (the amount of thermodynamic energy
which can be converted to work) using the technique of alchemical free en-

ergy perturbation or thermodynamic integration in which a given reference
system with known free energy is morphed into another more interesting
system by a smoothly parametrized change. For solids the starting state
frequently used is an ‘Einstein crystal’, consisting of purely harmonic in-
teratomic potentials, and much of the simulation evolves with a ‘nearly
harmonic’ model (Kaczmarski, Rurali and Hernández 2004).

It should be clear from examination of the effective potential (consid-
ered in Section 2) that it is unlikely that Nosé dynamics alone would en-
hance ergodicity. It was understood by Nosé himself from his first work on
the subject that Nosé (or Nosé–Hoover) dynamics is unable to thermalize
the harmonic oscillator. The only tunable parameter in Nosé dynamics is
the thermal mass µ. It is not even clear that there is a ‘best’ choice of
this parameter, in any practical sense, although for harmonic models we
might imagine that such a choice exists. Until recently the question was
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not properly addressed even in the case of a single harmonic oscillator.
Leimkuhler and Sweet (2005) made a careful study of the impact of the
mass parameter on the resulting combined dynamics, using a technique to
estimate the envelope of the accessible phase space. By predicting the onset
of chaos in the thermostatted harmonic oscillator, the authors were able to
bracket the optimal thermal mass to a certain interval. Unfortunately, even
with the best choice, identified from numerical experiments, the thermalized
trajectories obtained from Nosé dynamics do not fill in the accessible phase
space. The problem is associated to the presence of KAM tori, which can
be seen as arriving from the effective perturbation of the integrable system
(i.e., the harmonic oscillator, associated to infinite thermal mass). Recently,
the KAM approach was used to analyse Nosé dynamics by Legoll, Luskin
and Moeckel (2007).

The idea of dynamical thermostatting requires a more complex underlying
model to achieve ergodicity in such an application. An alternative is to
introduce a more complicated thermal bath, say with several, rather than
just one additional degree of freedom.

In the most general form, these thermostats can be described by a Hamil-
tonian of the form

HGN = H(q, p̃/S) + HG(s1, s2, . . . , sm, ps1
, ps2

, . . . , psm),

where S = Πα∈Asα is taken over a subset A of the indices 1, 2, . . . , m,
and the ‘bath’ HG is chosen so that the canonical density can be obtained
through integration over the entire set of thermostatting variables and their
momenta:
∫

· · ·

∫

(

δ
[

HGN − H0
GN

]

dp̃1 dp̃2 · · · dp̃3N

)

ds1 ds2 · · · dsm dps1
dps2

· · · dpsm

= exp

(

−
1

kBT
H(q, p)

)

dp1 dp2 · · · dp3N .

Examples of this type of thermostatting bath are developed and applied
to physical and chemical systems in Laird and Leimkuhler (2003), Leimkuh-
ler and Sweet (2004, 2005), Barth et al. (2005), Jia and Leimkuhler (2006)
and Gill, Jia, Leimkuhler and Cocks (2006). One of the key challenges that
has become evident through this work is that all of the dynamical thermo-
stat models contain a large number of parameters which must be chosen
carefully to ensure efficient and complete sampling. Barth et al. (2005)
described a heuristic for automatically determining the optimal thermo-
statting parameters, but it seems evident that these parameters will need
to be chosen using an adaptive method. The choice of parameters is com-
plicated by the fact that their selection influences not only ergodicity, but
also numerical stability.
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4.5. Are there effective generalizations of Nosé dynamics for other

molecular ensembles?

In many applications, it is necessary to modify the Nosé dynamics scheme
to make it useful in a physical setting. For example, it is often necessary to
control not only the temperature of a simulation, but also the pressure. To
model such a situation, we allow the simulation cell size to vary, following a
suggestion of Andersen (1980). In some cases, for example for homogeneous
liquids, we can use a cubic simulation cell. The cell volume is assumed to
be V and the box side L = V 1/3. We rescale coordinates,

qi = Lq̂i,

and simulation is performed within the unit cube. Transforming coordinates
in this way means that momenta should be rescaled by

pi = L−1p̂i.

The Nosé–Andersen equations of motion (Nosé 1984b) are then derived
from an extended Hamiltonian that includes both thermostatting and baro-
statting terms:

HNTP =
p̂T M−1p̂

2s2V 2/3
+

p2
s

2µV 2/3
+

p2
V

2νs2

+ U(V 1/3q̂) + PV + gkBT ln s,

where P is the external pressure. A temporal rescaling must be introduced
(now by sV 1/3). The resulting equations of motion can be treated sym-
plectically using a generalized leapfrog discretization, as demonstrated by
Sturgeon and Laird (2000), with similar benefit in stability as observed for
Nosé–Poincaré.

The ideas of Nosé–Poincaré sampling can also be applied to simulate a
system with an irregular shaped box, or one that allows variation of the
relative dimensions (Hernández 2001). Artificial ensembles which have a
density which can be viewed as a smooth function of the Hamiltonian can be
treated using dynamic thermostats based on ideas similar to Nosé–Poincaré
(Barth, Laird and Leimkuhler 2003). Jia and Leimkuhler (2006) introduced
methods for isothermal/isobaric simulation in only one part of a multiple
scale model.

Even more exotic ensembles are of interest, however, including the grand
canonical ensemble in which the particle number N is allowed to fluctu-
ate during simulation. A numerical method for this type of simulation
was proposed by Lynch and Pettitt (1997). There is no current under-
standing of how to treat this type of system using a geometric integration
method.
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4.6. What is the role of the thermostat in non-equilibrium modelling?

This article has been mostly concerned with equilibrium simulation in the
canonical ensemble for standard autonomous Hamiltonian systems. In re-
cent years there has been a rise in interest in simulating pre-equilibrium or
transient dynamics at the molecular level of detail, and there is a need for
methods for equilibrium simulations which are driven (slowly or rapidly)
in time.

Partial thermostats

As an illustration, we mention the use of thermostats that are applied to
only a part of the system. This can be achieved relatively easily within the
context of Nosé–Hoover dynamics (Nosé 1991), but it is also possible using
a partial thermostatting technique based on Nosé–Poincaré, as described in
a recent article of Jia and Leimkuhler (2006). Let us label the two groups of
variables of the system q, p and Q, P and assume an underlying Hamiltonian
of the form

H =
P T

M
−1P

2
+

pT m−1p

2
+ U(q, Q).

The idea arrived at in Jia and Leimkuhler (2006) is to work with a dynamical
model which couples Newtonian dynamics in Q, P with a Nosé–Poincaré
thermostatted subsystem:

Q̇ = M
−1P,

Ṗ = −∇QU(q, Q),

q̇ =
m−1p

s
,

ṗ = −s∇qU(q, Q),

ṡ = s
π

µ
,

ṗs =
pT m−1p

s2
− gfkBT −△H,

where

△H =
P T

M
−1P

2
+ H

[f ]
Nosé −H0,

H
[f ]
Nosé =

pT m−1p

2
+

p2
s

2µ
+ U(q, Q) + gfkBT ln s,

gf is equal to the number of degrees of freedom of light particles, and H0 is
given by

P T
M

−1P

2
+ H

[f ]
Nosé
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Figure 4.3. Coarse-grained molecular dynamics:
the simulation involves both fully atomistic
dynamics (e.g., in the vicinity of a developing
defect) and a natural finite-element discretization
based on a coarsened atomic lattice.

at initial values. In Dupuy, Tadmor, Miller and Phillips (2005) and Gill
et al. (2006), thermostatted simulation of a partially coarse-grained molec-
ular dynamics model was considered. Figure 4.3 presents an illustration of
the model whereby a defect region is to be treated with a coarse-grained
boundary domain. To illustrate, suppose that we have a homogeneous sys-
tem, consisting of N similar atoms interacting in a uniform potential energy:

H(q, p) =

N
∑

i=1

‖pi‖
2

2m
+

∑

i<j

φ(‖qi − qj‖).

The assumption is that in some region of space, we may define a natural
discretization based on 2×, 4×, . . . , spacing of the approximate atomic lat-
tice. For this purpose, we simply remove intermediate atoms and view the
configuration as being determined by a collection of representative atoms.
Between the atoms the interaction becomes the free energy of the represen-
tative atoms, averaging over the motion of the constituent atoms of each
element. Assuming that these intermediate atoms are near atomic lattice
sites, we can directly compute the free energy for the harmonic approxi-
mation. For example, in one dimension, we are simply removing successive
atoms between two neighbours. Assuming nearest neighbour interactions
only, the approximate energy of element i is found to be

1

2
kBT (ni − 1) ln

(

∂2φ

∂r2

∣

∣

∣

∣

r=ri

)

,
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where ni−1 is the number of intermediate atoms removed from the element
and ri is the mean spacing within the element. This results in an effective
coarse-grained potential for the representative atoms and a Hamiltonian of
the form

H(q, p, Q, P ) =

Na
∑

i=1

‖pi‖
2

2m
+

Nb
∑

i=1

‖Pi‖
2

2Mi
+ Veff(q, Q), (4.5)

where Q represents positions of the Nb coarse-grained element representative
atoms and q the Na atoms which are untouched. The goal is accurate
dynamics of the fully atomistic region using a sampled force field associated
to the coarse-grained part. Various possibilities exist for the masses assigned
to the representative atoms in the coarse-grained part: because they are
only used to provide sampling in the coarse-grained region, their choice
should not affect dynamics in the atomistic domain. Most authors have
used lumped masses, assigning to the representative atoms also the mass of
the eliminated atoms.

The challenge then is to develop effective thermostatting methods for
(4.5) which preserve the dynamical evolution in the atomistic region. One
approach is to use a generalized bath as described in Section 4.4, applied
only to the coarse-grained part of the system (Gill et al. 2006).

In Jia and Leimkuhler (2006), a non-equilibrium partial thermostatting
method somewhat similar to this was proposed and tested for simulat-
ing systems with an artificial thermal gradient (two temperatures in one
simulation).

Time-dependent models

As an illustration of the treatment of a time-dependent model, consider
the physical process of annealing , which is used commonly to strengthen
metallic alloys. By slowly cooling a material, it often enables a more per-
fect crystal structure to form which has stronger material properties. In
simulated annealing (Kirkpatrick, Gelatt and Vecchi 1983), a schedule of
temperature decay is introduced into Monte Carlo simulation. The result
is a method that samples an ever-lower value of energy. It can be shown
that if the temperature schedule is sufficiently slow, e.g., proportional to
1/ log(t), then the system is forced to find a global minimum (Hajek 1988).
For many applications it is necessary to forgo the theoretical foundation and
use a much faster temperature reduction, so that a minimum is reached in
a shorter period of time.

Annealing can also be implemented in an MD setting by introducing a
time-dependent temperature parameter. The idea is then to implement
a temperature control mechanism that allows temperature to vary with
time. The theory that applies to simulated annealing can be used essen-
tially unmodified to justify this dynamical approach, which is effectively a
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Figure 4.4. Annealing simulation of the seven-atom chain:
snapshots at equally spaced points in time show progression
to the vicinity of a low-energy state.

microscopic formulation of annealing. The natural question is: How can we
formulate (high-quality) numerical algorithms in such a setting? One idea is
simply to modify an existing algorithm for constant temperature simulation
so that the temperature is allowed to vary.

For example, we have implemented the GLA scheme allowing T (t) to vary
from step to step. We applied this to simulate the folding of the seven-atom
chain from an extended configuration, with the results shown in Figure 4.4.
The temperature schedule used was just T0/(1 + log(t)), where T0 = 1.

Despite the fact that it can minimize at least a simple chain model, this
algorithm has a serious flaw. In Nosé–Poincaré, the rescaling H → s(H −
H0) is only correct if H −H0 = 0. However, if T = T (t), we have H = H(t)
and this will no longer hold. This means that the time variable is incorrect
in this approach.

To correct the algorithm we assume that the temperature variation can
be regarded as adiabatic compared to the evolution of the physical variables
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and thermostat. Then we write

H̃ = s

[

H(q, p̃/s) +
p2

s

2µ
+ gkBT (t) ln s − HN

]

= s∆.

This yields equations of motion

dq

dτ
= M

−1p̃/s, (4.6)

dp̃

dτ
= −s∇qH(q, p̃/s), (4.7)

ds

dτ
= sps/µ, (4.8)

dps

dτ
= s

[

s−2p̃ · ∇pH(q, p̃/s) − T (t)
]

− ∆. (4.9)

This is in exactly the same form as the Nosé–Poincaré method. The dif-
ference is the time-dependent temperature and also the fact that HN (in
∆), and t are viewed as dependent variables. As HN should be regarded as
conjugate to time, we have

dHN

dτ
= gkT ′(t)s ln s,

dt

dτ
= s,

which is an additional pair of equations that must be solved in tandem with
the physical variables. A discretization for this system can be derived by
application of the generalized leapfrog method.

In several recent articles, Michel Cuendet has employed a similar tech-
nique for time-dependent Hamiltonians together with Jarzynski’s relation
(Jarzynski 1997a, 1997b) to relate non-equilibrium work averages and ther-
modynamic free energy differences, where paths are computed using Nosé–
Hoover or Nosé–Poincaré thermostatted dynamical trajectories (Cuendet
2006a, 2006b). The precise details of numerical treatment and the benefit
of symplectic methods in such time-dependent systems are still unclear.
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C. Schütte and R. Skeel, eds), Vol. 49 of Lecture Notes in Computational

Science and Engineering, Springer, pp. 125–140.
G. Benettin and A. Giorgilli (1994), ‘On the Hamiltonian interpolation of near to

the identity symplectic mappings with application to symplectic integration
algorithms’, J. Statist. Phys. 74, 1117–1143.

S. Bond, B. Laird and B. Leimkuhler (1999), ‘The Nosé–Poincaré method for
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